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Abstract

Estimating post-secondary instructors’ value-added is challenging because college stu-
dents select their courses and instructors. In the absence of sound measures of value-
added, universities use subjective student evaluations to make personnel decisions. In
this paper, we develop a method to estimate instructor value-added at any university.
The method groups together students who have previously taken similar courses and
estimates value-added based on differences in outcomes for students in the same group
and same course who have different instructors. Using a unique policy at a large public
university in Indiana, we show that our non-experimental method controls for selec-
tion just as well as methods that exploit conditional random assignment of students
to courses. We next show that our method reduces forecast bias in a wider variety
of institutions using data from nearly all public universities in Texas. We find that
individual instructors matter for students’ future grades and post-college earnings in
many subjects and courses. On average, moving to a 1 standard deviation better in-
structor would increase a student’s next semester GPA by 0.13 points, and earnings
six years after college entry by 17%. Strikingly, value-added is only weakly correlated
with student evaluations. An instructor retention policy based on value-added would
result in 2.7% higher earnings for students attending Texas universities.
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1 Introduction

Teaching is central to the mission of many universities. Universities demonstrate their com-

mitment to instructional quality by considering teaching when making important personnel

decisions such as hiring, tenure, promotion, and retention. While institutions strive to

provide high-quality instruction, they often lack objective measures of instructor quality.

Absent objective measures, universities rely instead on subjective student evaluations. How-

ever, research indicates that these evaluations can distort teaching incentives by encouraging

grade inflation (Nelson and Lynch, 1984; Eiszler, 2002) and may also reflect students’ biases

(Chisadza et al., 2019).

Given the limitations of subjective evaluations, quantitative measures of instructor qual-

ity, such as value-added models extensively used in K-12 education, present an appealing al-

ternative. However, estimating value-added in higher education is complicated by substantial

identification challenges. Except when applied in an experimental or randomization-based

setting, value-added estimation requires that selection be on observables — i.e. the factors

influencing student selection across instructors can be observed and controlled for. In K-12,

it is often sufficient to control for lagged student achievement, measured by a previous year’s

standardized test score, to account for selection (Kane and Staiger, 2008; Chetty et al.,

2014a). In most higher education settings, however, researchers lack a similar standard-

ized measure of student ability to summarize selection. Furthermore, since college students

are free to choose their course schedules, unobservable characteristics likely guide students’

choices of instructors in ways that cannot be addressed by controlling for achievement alone.

When students’ unobservable intentions are correlated with both their choice of instructor

and future outcomes, like subsequent course selection or career path, conventional value-

added estimates that do not address this form of selection will be biased.

This paper proposes a general method for estimating instructor value-added at many uni-

versities by augmenting the value-added model with students’ “course histories.” Motivated

by the intuition that some students who pursue the same major have different unobserved

“types” that steer them to different instructors, our approach aims to overcome bias from

student selection by identifying value-added from the differences in outcomes of students who

have previously taken similar classes but, for some current class of interest, have different

instructors. Importantly, although the course history data our method relies on are rich,

they are come from transcripts, which are necessarily maintained by every post-secondary

institution. Estimates of value-added that control for course histories show that instructors

impact their students’ future grades and earnings.

To see the intuition of augmenting value-added with course histories, consider two stu-
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dents taking Organic Chemistry with different types: one may take it as a pre-requisite for

medical school, while another may take it on the path towards becoming a chemist. Informed

by their intentions, students who fit these archetypes likely select different instructors if they

perceive that the instructors may differentially help them obtain what they want to get out of

the course. We propose that students reveal their types through the courses they have taken

previously. Thus, we might distinguish “medical school types,” who have previously taken

Human Anatomy and Biology, from “chemist types,” who have previously taken Calculus.

Our method creates groups of students with similar unobservable type using hierarchical

clustering based on their course histories. By limiting comparisons that identify value-added

to only take place within these groups, we are able to control for some of the otherwise

unobservable differences that might bias conventional value-added estimates.1

In the spirit of LaLonde (1986), we begin by comparing value-added with course histories

to an experimental benchmark, using data from Purdue University. At Purdue, we leverage

an unusual policy that assigned students to courses randomly, conditional on submitted

preferences.2 This policy allows us to estimate value-added to next-semester GPA under

conditional randomization for comparison with our course history value-added estimates,

which use methods that could be applied at any university. We find that course history

and conditionally random value-added generate very similar rankings of instructors, with a

correlation between the two methods of within-subject instructor rankings of 0.83. We also

estimate value-added using lagged achievement to control for selection to document that

course histories or a policy that randomizes students into classes are indeed necessary for

identification. Similar to value-added in at K-12 setting, the lagged achievement value-added

estimates control for observable measures of lagged student achievement, such as past GPAs

and entrance exam scores, and fixed student and classmate characteristics.

Using value-added estimates from Purdue, we find that controlling for course histories re-

duces forecast bias substantially, relative to the standard lagged achievement model. Forecast

bias often occurs when unobservably higher-ability students select higher-quality teachers.

In such a case, value-added does not predict student outcomes one-for-one out of sample,

and a forecast bias test will yield coefficient estimates far from 1. We assess forecast bias

using two tests. The first, which we call the teaching roster changes test, is identified by

year-to-year changes in teaching rosters that are unexpected by students, following Chetty

1Dale and Krueger (2002) provide a similar motivation for identifying the return to different universities
by comparing outcomes of students who apply to the same set of universities but differ in the institution
they ultimately attend. We extend their clever intuition to a setting where selection across instructors, once
we restrict comparisons to be between students with similar course histories, is more plausibly random.

2Most prior value-added estimates for instructors in higher education use similar policies that randomize
student enrollment.
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et al. (2014a). The second, which we call the conditional random assignment policy test, uses

value-added estimated with data from before Purdue’s policy to predict student outcomes

during the later period, when the policy was in place. When these bias tests are applied to

lagged achievement value-added estimates — which include only the conventional controls

used in K-12 value-added estimation— the estimates do not predict student outcomes out

of sample, with bias test coefficients between 0.25 and 0.32. Therefore, these controls are

insufficient to control for student selection. In contrast, the bias tests indicate that our value-

added estimates with course histories predict student achievement out-of-sample very well,

with bias test coefficients between 0.7 and 0.9. We also find that value-added with course

history controls for selection approximately as well as estimates that use the conditional

random assignment policy.

We use our course histories value-added method to estimate value-added to earnings and

grades by applying our method to 33 public four-year universities in Texas. An appealing

feature of the Texas data is our ability to link transcript data to students’ earnings. This

allows us to estimate value-added to earnings in addition to value-added to next-semester

grades. With differing strengths and weaknesses, these two outcomes are natural starting

points for value-added estimation in higher education. Semester GPA is a frequently ob-

served measure of student ability that is of interest to both students and universities, as

grades impact students’ graduation rates, eligibility for certain majors, and graduate school

prospects. However, GPA is internal to the university and is influenced by grade inflation

and differing grading patterns across subjects. At the other end of the spectrum, earnings

have a clearer connection to student welfare, are determined by the market, and are compa-

rable across subjects and universities, but is not immediately observable for students. Many

other intermediate outcomes could fit between grades and earnings.

In Texas, we find that course histories control for student selection at universities without

randomization-based enrollment policies. We apply the teaching roster changes forecast bias

test to estimates of value-added to grades and earnings using course histories to control for

selection. For both value-added to grades and earnings, the value-added estimates predict

student achievement very well: 75% of forecast bias coefficients for value-added with course

history controls are between 0.75 and 1.25, indicating that course histories address selection

in this more general setting. Value-added estimates that use the lagged achievement model

fail to control for selection, with the majority of forecast bias coefficients falling below 0.6.

Our estimates of value-added using course histories document that individual instructors

can affect both students’ grades and students’ earnings. An instructor with a 1 standard

deviation higher value-added increases their students’ next-semester GPA by 0.13 grade

points and earnings six years post-college entry by 17%. Additionally, we find heterogeneity
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in the variance of value-added by subject and institution.

Similar to the K-12 literature, we find that instructor characteristics are not strong

predictors of value-added. Specifically, the R2 in a regression of value-added on a rich set

of observables is less than 0.02 for both measures. Nevertheless, a few characteristics are

statistically significant predictors of value-added. For example, associate professors and

contingent instructors have significantly higher value-added to earnings than full professors

and assistant professors.

Finally, to assess whether value-added measures can be leveraged by universities to im-

prove student outcomes, we estimate the earnings gains possible from a counterfactual in-

structor retention policy that uses value-added rather than student evaluations. To conduct

this exercise, we scraped all instructor evaluations from one of the schools in the Texas sam-

ple: Texas Tech. Descriptively, we find that student evaluation scores are mildly positively

correlated with value-added to GPA but are uncorrelated with value-added to earnings. In-

terestingly, a stronger correlate of student evaluations is not value-added, but instructor

grading leniency. The correlation between evaluation scores and the average grades an in-

structor assigns is nearly twice the magnitude of the correlation with value-added to GPA.

Given the weak or non-correlation between evaluations and value-added, there are likely

potential gains to students’ grades or earnings from a policy that leverages value-added in

instructor retention.

We find that a counterfactual policy using value-added rather than student evaluations

to make retention decisions for contingent instructors could increase student earnings. We

motivate our counterfactual policy by documenting that, at Texas Tech, the likelihood that

a contingent instructor is retained is roughly linear for most student evaluations, but drops

discontinuously for instructors who receive evaluations in the bottom vigintile of evaluations.

This discontinuity implies that the institution does indeed use student evaluations in reten-

tion decisions for contingent instructors. We then simulate a counterfactual policy that uses

value-added in the way evaluations are currently used for retention and estimate earnings

gains under the counterfactual policy to be in the range of 2.7% of quarterly earnings for

the average student.

This project makes three primary contributions. First, we develop and validate a novel

approach for estimating instructor value-added in higher education, overcoming selection

issues that previously limited research to a few institutions with unique enrollment policies.

The spirit of this approach may be relevant in other value-added settings where agents se-

lect on some unobservable characteristic that may be correlated with some other observable

behavior. Second, we provide new evidence on the importance of instructors, demonstrating

significant variation in value-added impacts on both grades and earnings. Finally, we extend
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our method to a broad sample of institutions and subjects, providing insights into char-

acteristics associated with high value-added instructors in a more nationally representative

context.

This project contributes to several strands of literature. A small but growing body of

research estimates instructor value-added in higher education (Hoffmann and Oreopoulos,

2009; Carrell and West, 2010; Figlio et al., 2015; Brodaty and Gurgand, 2016; DeVlieger

et al., 2018). These studies typically exploit unique institutional features, such as the ran-

dom assignment of students to course sections or the use of standardized evaluations, to

estimate instructor value-added for a limited set of courses. For example, Carrell and West

(2010) leverage a unique policy of random assignment of students to core courses at the

United States Air Force Academy to estimate value-added based on standardized final exam

scores. A more recent study by DeVlieger et al. (2018) examines the value-added of algebra

instructors at the University of Phoenix, a large for-profit online university. Both studies

document large variation in instructors’ impacts on student outcomes.

Our primary methodological contribution is to develop a method for estimating value-

added that can control for selection at the vast majority of institutions that do not use

randomization or other restrictive policies to assign students to courses. An additional

contribution is that, we estimate value-added for instructors across a broader range of courses

than previous studies and extend the analysis to include value-added to earnings. Our

results align with the existing literature in our finding of large variation in instructor value-

added to student achievement. We additionally extend analysis by Carrell and West (2010)

and DeVlieger et al. (2018) by comparing instructor value-added to student evaluations of

instructor quality. In contrast to the finding in Carrell and West (2010) that instructors

who raise student scores in their own courses tend to receive high evaluation scores but have

low value-added to student grades in subsequent courses, we find that student evaluations

are positively correlated with value-added to next-semester GPA but are uncorrelated with

value-added to earnings.

We also build on a much larger literature that measures instructor value-added to test

scores in K-12 education. This literature uses value-added methods to demonstrate that

teachers in primary and secondary schools have causal impacts on student outcomes across

a variety of settings.3 Our paper extends these methods to the higher education context and

finds that university instructors similarly affect student outcomes. Our work builds most

3For example, Boardman and Murnane (1979); Hanushek (1979); Rockoff (2004); Jacob and Lefgren
(2008); Rothstein (2010); Chetty et al. (2014b); Angrist et al. (2017); Macartney et al. (2018); Altonji and
Mansfield (2018); Rose et al. (2022). We also add to a growing literature that estimates value-added to non-
test outcomes, such as student behavior (Jackson, 2018; Petek and Pope, 2023) and academic performance
far into the future (Gilraine and Pope, 2021).

6



directly on three studies. Kane and Staiger (2008) estimate value-added in the Los Angeles

Unified School District, using a randomized student-teacher assignment policy to validate

estimates and test for bias. We apply a similar strategy, using a randomized sample to

validate estimates from non-randomized data. Chetty et al. (2014a) develop forecast bias

tests in New York schools, which we adapt for quasi-experimental tests based on semester-to-

semester changes in teaching rosters. Chetty et al. (2014b) extend this work to estimate the

effects of teacher value-added to test scores on long-term outcomes like college attendance

and earnings. We similarly estimate value-added to post-college earnings, but we differ by

estimating the impact of instructors on earnings directly.

The rest of the paper proceeds as follows. Section 2 describes the foundational frame-

work for value-added estimation. Section 3 describes the two panel data sources used for

this project. Section 4 describes the limitations of conventional value-added models in the

general higher education setting. Section 5 describes and validates our new “course his-

tories” approach. Section 6 uses our value-added estimates to describe the characteristics

of high-quality instructors. Section 7 assesses the potential for welfare improvements from

instructor retention policies guided by value-added, rather than student evaluations. Section

8 concludes.

2 Statistical Framework and Estimation

Our statistical framework models the causal impact of an instructor on student outcomes

as a fixed effect in a linear model. This framework motivates how we estimate individual

instructor value-added measures using empirical Bayes shrinkage to account for measurement

error.

In this section, we describe how we estimate value-added and apply empirical Bayes

shrinkage to account for measurement error. Our model and estimation framework both

follow the value-added literature.

Consider a generic achievement measure A∗.4 Following the value-added literature, we

express the achievement A∗
ijsct of student i in course c of subject s during academic period t

in instructor j’s classroom as

4In elementary and secondary education, the conventional achievement measure is performance on a
standardized test. Lacking standardized tests in higher education, we often use the students’ next-semester
GPA as a comparable academic achievement measure. To measure student outcomes more concretely, we
also use student log earnings six years post-college entry.
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A∗
ijsct = Xitβ + Cjsctγ + ρc + λt + νijsct (1)

νijsct = µjs + ϵijsct (2)

where Xit captures student i’s background characteristics, Cjsct are characteristics of other

students taking class c with instructor j,5 ρc is a course fixed effect, λt is a period fixed effect

and νijsct is a composite error term that contains individual error ϵijct and µjs, which is

instructor j’s value-added to Aijsct. Note that, in practice, all estimation takes place within

subject subject because there are few instructors who teach in more than one subject. Thus,

we drop the s subscript for the remainder of the section.

Our estimands of interest are µj, instructor j’s value-added, and the variance of the

distribution of value-added, σ2
µ, which describes the impact of moving to a higher-quality

instructor. In particular, the standard deviation of the value-added distribution σµ is the

average impact of having a one s.d. higher VA instructor.

We make two simplifying assumptions for our estimation. First, we assume that value-

added is fixed across time t and across course c.6 Second, we assume that both µj and

ϵijct are distributed normally, allowing us to use maximum likelihood estimation (MLE) to

estimate variances for both distributions, following Gilraine et al. (2020).7

To estimate µj, we begin by residualizing A∗
ijsct on background and classroom character-

istics:

Aijct = A∗
ijct −

(
Xitβ̂ + Cjctγ̂ + ρ̂c + λ̂t

)
(3)

where the estimated coefficients and fixed effects come from the regression in equation (1)

with Equation (2) substituting for νijct. The substitution and subsequent inclusion of µj in

the residualizing step assures that we estimate these coefficients using only within-instructor

variation and not across-instructor variation (Chetty et al., 2014a). Using the Aijct, we

construct three different measures of value-added, which we use for different tests because

of their statistical properties.

Our main measure of value-added used in all bias tests is constructed using empirical

5Specifically, we control for average lagged GPA of all students who take instructor j’s sections of course c
in period t. We define these characteristics at the instructor-course-period level, such that, for an instructor
who teaches multiple sections of c in semester t, we pool across all of their sections.

6By defining value-added at the institution-by-subject level, value-added may vary for the very small set
of instructors who are attached to multiple subjects or institutions.

7See Appendix C.1 for more details on this method.
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Bayes methods. Applying empirical Bayes is common in the value-added literature, since

value-added estimates are subject to classical measurement error from typically large vari-

ances in the student error term, ϵijct. We expect ϵijct to vary widely because exams, grades,

and other outcomes imperfectly measure students’ true achievement. Thus, empirical Bayes

shrinks the artificially noisy fixed effects estimates towards a normal distribution with mean

zero. Intuitively, empirical Bayes down-weights the contribution of periods where an in-

structor has few students, and shrinks overall estimates for instructors when the estimated

variance of the value-added distribution is smaller relative to the variance of the individual

error distribution.8

In some applications, such as the teaching roster changes bias test introduced in Section

4.2, we regress student characteristics on the estimated value-added of their instructors. If

these same students’ data was used to estimate that value-added, there would mechanically

be spurious correlation between estimated value-added and student outcomes. In order

to avoid these spurious correlations, we construct jackknifed versions of empirical Bayes

value-added estimates. Jackknife value-added estimates are computed by excluding the

current period’s data to predict value-added in the current period. By relying on all periods

other than the current period, jackknife value-added estimates eliminating this mechanical

correlation.9

When value-added is on the left hand side of a regression model, the classical measurement

error in our value-added estimates does not bias the coefficients of the regressions,10 and we

simply estimate value-added as the average of residuals Aijct. This estimate is the same

as if we added the instructor fixed effect to a regression based on equation (1). For each

application, we will note which of the three versions of value-added is being used.

These measures of value-added are unbiased when E[ϵijct|Xit, Cjct, ρc, λt] = 0, or when

students select instructors only on observables. Research suggests that this selection on

observables assumption holds in the K-12 setting for value-added to test scores (Kane and

Staiger, 2008; Chetty et al., 2014a) and value-added to other non-test outcomes (Jackson,

2018; Petek and Pope, 2023). However, there is little to no evidence on that it holds equally

well in the higher education setting where students have far more autonomy when selecting

instructors. We discuss this assumption in greater detail in Section 4.

8For additional detail, see Appendix C.2.
9Appendix C.3 contains more information about jackknife estimates.

10Bias in these regressions arises when a regressor is correlated with the unobserved error in the model. If
un-shrunk value-added estimates are used as regressors, there may be a correlation between the measurement
error in these estimates and the unobserved error in the model. However, when value-added is the outcome
variable, the measurement error is no longer associated with a regressor, so correlation with the unobserved
error is not a concern.
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3 Data and Setting

We use two sets of longitudinal administrative data on students: transcript data from Purdue

University, and linked transcript-to-earnings data covering all public universities in Texas.

For both panels, we estimate instructor value-added to undergraduates’ achievement.11

3.1 Purdue student panel

We use data from Purdue University, a selective public institution in Indiana with a strong

focus on STEM fields. Purdue is classified as an R1 university due to its high level of re-

search activity. Our dataset covers student transcripts from 2011 to 2023, providing detailed

information on course enrollment, grades, pre-enrollment characteristics (such as entrance

exam scores), and student demographics.

In Fall 2018, Purdue instituted a policy that assigned students to courses based on

submitted ranked lists of course preferences. Each student submitted a list of preferences,

and randomization was used to break the many ties among students with equal priority and

similarly ranked lists. We observe these ranked lists for each student in every semester where

students were assigned via algorithm: Fall 2018, Fall 2019, and every semester from Fall 2020

and onward, including Spring semesters.12 Our analysis does not require the algorithm to

be strategy-proof. Instead, we rely on the fact that students with the same (or similar)

submitted lists of preferences had the same (or similar) probabilities of being assigned to

an instructor, which is true by construction. Appendix B contains more details about the

algorithm.

Using randomization-generated variation to produce unbiased estimates to mimic sta-

tistical properties of a very large randomized random experiment is now a well-established

method. This method has been applied in several school choice settings,13 and we adapt

it to Purdue. Applying this method, we construct unbiased benchmark estimates of each

instructor’s value-added. These benchmark estimates are the “gold standard” against which

we compare our course history value-added estimates. In addition, we use the variation from

the conditional random assignment to conduct a forecast bias test.

11We could estimate instructors’ value-added to their graduate students’ achievement for those who teach
graduate students. This would be especially useful for value-added to earnings among students such as
MBAs, JDs, or any quasi-vocational master’s degree students. For such students, classroom instruction is
a primary mode of conveying learning. This method would likely not work well for Ph.D. students because
most advising takes place outside of classrooms and is difficult to quantify.

12A few students, such as athletes, were exempt from the algorithmic assignment, and these students are
excluded from our analysis.

13For example, see Deming et al. (2014) or Angrist et al. (2017).
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3.2 Texas student panel

We use administrative data from the Texas Education Research Center, which contains

linked transcript-to-earnings records for all students who attended public four-year univer-

sities in Texas from 2011 to 2021. The transcript data show every course taken by each

student, including the instructor of record, as well as pre-enrollment characteristics (such as

entrance exam scores) and student demographics. These transcripts are linked to the state’s

unemployment insurance system, allowing us to track quarterly earnings for students who

remain employed in Texas.14 Additionally, the Texas dataset includes information about

instructors, such as their rank, demographic characteristics, and salary.

The Texas data offer X key advantages for our analysis. First, we can estimate novel

measures of instructor value-added to earnings, which is rarely possible in higher education

and not done in K-12. Second, we can explore the relationship between instructor character-

istics and value-added.15 Third, the 33 Texas institutions16 represent the full array of public

secondary post-secondary institutions in the US. On average, they admit 83% of applicants

(compared to 78% for all US public universities), have similar student-faculty ratios (19.36

compared to 16.68 overall), and admit students with comparable standardized test scores

(NCES, 1995-2022). This diversity makes the Texas data more reflective of typical US pub-

lic universities than Purdue, which is relatively selective. While the Texas sample includes

some highly selective institutions, such as the University of Texas at Austin and Texas A&M

University, it also includes many non-selective institutions. Appendix Table A-1 compares

other characteristics of the Texas sample and Purdue to the typical US public university.

An additional margin along which the Texas sample reflects characteristics of the average

university is in its use of contingent instructors. According to faculty counts from the

National Center for Education Statistics, 27% of instructors at the average Texas university

are in contingent positions (e.g., instructor, lecturer), slightly more than the corresponding

national value (20%). We will revisit the importance of contingent faculty in Section 7,

where we consider counterfactual faculty retention policies targeted primarily at instructors

on flexible contracts, such as contingent faculty.

In Section 6.3, we compare our estimates of instructor value-added to the type of data

many universities currently use to evaluate instructor quality: student evaluations. For

this purpose, we collected instructor evaluations by scraping online archives of Texas Tech.

14Earnings for self-employed workers or those who move out of Texas are not observed. We observe
earnings for 85% of students, so this limitation likely has only a minor impact on our estimates.

15Chetty et al. (2014b) estimate the effect of teacher value-added on income rather than estimating teacher
value-added to income itself.

16Our analysis is limited to baccalaureate-granting institutions. We exclude the Texas A&M: San Antonio
and the University of North Texas at Dallas, which do not provide consistent data over the full period.
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These evaluations, dating back as early as 2006, include students’ overall assessments of the

instructor and course as well as students’ responses to specific questions, such as whether

the course was conducted fairly or whether the instructor was approachable. We merge the

evaluations data with the value-added data by matching course IDs across both datasets.

4 Lagged Achievement is Insufficient to Control for Bias from

Students’ Selection to Instructors

In this section, we demonstrate that controlling for lagged measures of student achievement,

which is typically sufficient in K-12 value-added estimation, is insufficient for eliminating

bias from selection in value-added estimation for higher education. We make this point at

Purdue, where we leverage its unique institutional policy in which students are randomly

assigned to courses and instructors conditional on their preferences. With Purdue data, we

compare forecast bias of the randomization-based benchmark value-added estimates to the

forecast bias of lagged achievement-based estimates.

4.1 Value-added estimation using established methods

Research in K-12 value-added has shown that observable characteristics are often sufficient

to control for student selection across teachers (Kane and Staiger, 2008; Chetty et al., 2014a).

The two most important among these characteristics are lagged student achievement (mea-

sured through prior standardized test scores) and class composition (measured through av-

erages of these lagged scores). Standardized test scores correlate with unobservable ability

that is likely correlated with both future performance and instructor assignment. Classroom

averages of lagged test scores are a sufficient statistic for selection patterns of classmates

(Altonji and Mansfield, 2018).17 These, along with a few other background characteris-

tics, have been found to control for selection in most K-12 settings. This is likely because

many students are assigned to classes by central allocation systems in which fairness, if not

randomness, is seen as desirable.

In contrast, students at most universities have the freedom to choose both their courses

and their instructors. When these choices reflect unobserved student types (e.g. motivation,

work ethic, intended field of study, access to resources within the university), which are corre-

lated with future outcomes, value-added estimates that do not account for this selection will

be biased. For example, consider two types of students taking organic chemistry: “medical

school” types take organic chemistry as a prerequisite for medical school, while “chemist”

17For example, a high-achieving student may be assigned to a teacher that teaches “gifted and talented”
students.
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types take organic chemistry to develop foundational knowledge for their research. For expo-

sition, the medical school type takes organic chemistry primarily to fulfill a requirement for

a competitive graduate program and has an incentive to find the instructor who maximizes

their likelihood of receiving a high grade. The chemist type, on the other hand, takes organic

chemistry to develop valuable skills, and therefore has an incentive to find the instructor who

provides them the most human capital.18 Estimating instructor value-added to lifetime earn-

ings without accounting for these different types will introduce bias because the estimates

would be unable to disentangle differences in earnings attributable to the instructor from

differences in earnings typical of doctors relative to chemists.

Compared to K-12, higher education presents a second challenge to value-added estima-

tion because college students typically do not take standardized tests at the end of their

courses. As a result, we lack a consistent outcome measure of student achievement. Ad-

ditionally, we do not have reliable measures of prior student achievement, which have been

shown in K-12 research to be important for controlling for student selection. While college

entrance exams provide some pre-college measures of aptitude, they are not tied to specific

courses. Furthermore, pre-college achievement may be less relevant as a lagged measure of

student performance, particularly for students who are older or enrolled in upper division

courses. Similarly, GPA from previous semesters is insufficient because grades are a broad

and imprecise indicator of student ability. Although these controls help account for student

selection, they may not fully eliminate bias.

To assess the extent of the challenges introduced by these limitations, we compare value-

added estimates based solely on the conventional K-12 controls (lagged achievement and a

set of fixed student characteristics) to the benchmark estimates based on randomization.

This comparison shows the bias that remains when only using traditional controls.

For the approach that estimates value-added using only the controls used in K-12 esti-

mation, we control for lagged student achievement using a student’s semester GPA from the

previous semester and incoming standardized test scores.19 In addition, we control for a set

of student and classroom characteristics: the student’s level (freshman, sophomore, etc.),

gender, race, and age, and classroom averages of lagged semester GPA and entrance exam

scores. These controls represent the full set of characteristics used in the residualization step

described in Equation 3.

18Students could be choosing instructors in other ways as well. For example, all students might choose
instructors with easier grading standards. If all students selected instructors in the same way for every
course, forecast bias would not be an issue in higher education. The following section will demonstrate that
forecast bias is a problem in higher education.

19Because summer academic periods are quite different from school-year academic periods, we use only
data from fall and spring semesters to construct lagged and future GPA variables.
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Our benchmark estimates leverage Purdue’s course assignment policy to address the

selection challenge. The course assignment policy operates fully through the ranked lists of

preferences submitted by students. For example, students with identical preferences who

want to enroll in an over-subscribed course are split randomly across sections using an

algorithm.20 In this setting, we are able to control for student selection by directly controlling

for these lists of ranked preferences.

To control for student preferences, we construct fixed effects for each group of students

who submit very similar preference lists. Ideally, we would include a fixed effect for each

possible preference list, but this is infeasible. We constructed groups of students by applying

hierarchical clustering to a vector containing indicators for the six most preferred courses.

By clustering on student’s preferred courses, we ensure that students in the same group have

the same or very similar probabilities of being assigned the same instructor within a course.21

The residualizing equation for value-added using conditional random assignment aug-

ments Equation 1 with assignment probability group fixed effects Pict:

A∗
ijsct = Xitβ + Cjsctγ + Pict + ρc + λt + µjs + ϵijsct. (4)

The fixed effect Pict partitions students in course c during period t into groups of students

with similar lists of ranked preferences. We then use residualized achievement to construct

value-added estimates.

4.2 Forecast bias in value-added estimates

To compare value-added estimates from lagged achievement models and conditional ran-

domization approaches, we use forecast bias tests which are now well established in the

value-added literature. Forecast bias arises when unobserved factors influencing the selec-

tion of students to instructors are correlated with student achievement, beyond what is

captured by the controls in the model.

The intuition behind forecast bias is straightforward. When value-added estimates are

biased due to student selection, instructor effects tend to be overstated. This can happen

when high-ability students are more likely to choose higher-quality instructors, making these

instructors appear more effective than they truly are. Conversely, lower-quality instructors

may seem worse because they are chosen by lower-ability students. As a result, the variance

of the estimated value-added distribution is distorted. This distortion occurs for any type of

20Purdue uses a unique course registration algorithm to assign undergraduate courses to students, as
developed by Müller et al. (2010). For more details, please see Appendix B.

21See Appendix C.4 for details on how we implemented hierarchical clustering.
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student selection that is unobservable and correlated with the outcome of interest, not just

for the given example.

Following Chetty et al. (2014a), we define the forecast bias B of value-added estimator

µ̂j as 1 − α, where α is estimated from the regression of residualized achievement Aijct on

µ̂j:

Aijct = ρc + λt + αµ̂j + ψijct. (5)

If value-added estimates are not biased, the true α is equal to 1 and estimates of α should be

close to 1. Intuitively, the forecast bias B captures the extent to which value-added measures

fail to accurately predict residualized student achievement, often due to unobservable factors

ψijct influencing student-instructor assignments. When there is forecast bias, the true impact

of an instructor who is one standard deviation above the mean is not simply σµ̂, the standard

deviation of the estimated value-added distribution, but (1−B)σµ̂.

We apply two tests for forecast bias that control for selection in different ways. The first

controls for selection using semester-to-semester changes in teaching rosters which difference

out unobservable differences in student selection. The second leverages Purdue’s conditional

random assignment policy. Specifically, we evaluate whether out-of-sample value-added es-

timates from before the policy predict student outcomes during the period of conditional

random assignment.

The first forecast bias test, which we call the teaching roster changes forecast bias test,

or “roster test” for short, follows Chetty et al. (2014a) by using year-to-year variation in

teaching assignments as a quasi-experimental source of variation. This variation arises from

instructors’ shifting teaching responsibilities across semesters due to factors like sabbaticals,

leaves, or changes in course loads. We include subject-by-semester fixed effects so that

the identifying variation comes from changes within subject that occur across course levels

within the same semester. For example, an instructor may switch from teaching the fall

freshman-level course in macroeconomics to the fall senior-level course in macroeconomics.

The roster test is valid so long as changes in student unobservables are unrelated to the

changes in teaching rosters. A potential violation of this assumption would occur if students

time their enrollment in order to study with high value-added instructors.22

The roster test shows whether the method being implemented systematically over- or

under-estimates instructors’ value-added. In the roster test, we compare changes in the

average value-added of instructors within a subject and course level to corresponding changes

22We test this assumption with a robustness check that regresses changes in student enrollment on changes
in value-added and find that changes in value-added within a course do not predict changes in student
achievement. The full results of this test are in Appendix D.3.
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in average student outcomes. If the value-added estimates are unbiased, then the change

that occurs when we replace a low value-added instructor with a high value-added one (or

vice versa) should predict the change in average student outcomes one-for-one. However, if

the value-added estimates are biased, they will not predict student outcomes one-for-one.

Formally, let Aslt represent the student-weighted average of residualized student achieve-

ment Aicsjlt within a subject-course level-period cell andMslt represent the student-weighted

average of jackknife empirical Bayes estimates of value-added within that same cell. Define

the difference in average residualized achievement between periods23 Aslt as:

∆Aslt = Aslt − Asl,t−2.

Define ∆Mslt analogously. The forecast bias test regresses changes in average residual student

outcomes on changes in average value-added:

∆Aslt = δ∆Mslt + ξslt. (6)

An estimate of δ̂ = 1 indicates that the estimates are forecast unbiased.

Table 1 shows results of the roster forecast bias test for estimates of value-added to

next-semester GPA at Purdue. We estimated value-added using lagged achievement during

the random assignment period (2018-2023) for comparison with the conditional random

assignment approach and over the entire data period (2011-2023). Columns 1 and 2 show

results for these two estimates. The point estimates, 0.280 and 0.249 respectively, provide

strong evidence that value-added based on lagged achievement is subject to forecast bias,

indicating that lagged achievement alone does not adequately control for selection.

In contrast, value-added estimates derived from the conditional random assignment ap-

proach effectively control for selection. Column 3 shows that the forecast bias test yields a

point estimate of 0.793 for value-added under random assignment, suggesting that the pol-

icy sufficiently restricts student selection to identify value-added. Although the confidence

interval does not contain 1, a point estimate of near 0.8 aligns with expectations from the

value-added literature.24

The second forecast bias test, which we call the conditional random assignment policy

forecast bias test, or “policy test,” uses Purdue’s enrollment policy to control for selection.

Let µ̂j
pre be value-added estimated on data from 2011-2017, before the conditional random

assignment policy. This test regresses individual student outcomes during the conditional

23Note that we difference fall semesters with fall semesters and spring with spring because of the seasonality
of courses.

24For instance, Kane and Staiger (2008) found a forecast bias point estimate of roughly 0.8 when estimating
value-added using explicit random assignment of elementary students to teachers.
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Table 1. Teaching roster changes forecast bias test for lagged
achievement value-added at Purdue

Lagged Conditionally
Achievement Random

Period: 2018-23 2011-23 2018-23
(1) (2) (3)

∆ average value-added 0.280 0.249 0.793
(0.201) (0.092) (0.135)

N 988 5,867 798

Notes: The teaching roster changes forecast bias test leverages year-
to-year variation in teaching assignments to assess whether changes in
residual student achievement are predicted by shifts in instructor value-
added, with estimates regressing students’ residualized next-semester
GPA on changes in average jackknifed value-added. Columns (1) and
(2) control for lagged achievement; Column (3) adds course preference
controls. Columns (1) and (3) restrict to the conditional random assign-
ment period (2018-2023), while Column (2) shows estimates using the
full period (2011-2023). Observations are at the subject-course level-
period level. Standard errors are clustered at the period-subject level.
An estimate closer to 1 indicates better controls for selection.

random assignment period on these out-of-sample empirical Bayes value-added estimates:

Aijct = ρc + λt + αµ̂j
pre + Pict + ψijct (7)

where Pict are assignment group similarity fixed effects from Equation 4. Since we directly

control for these assignment groups, we test whether our pre-policy estimates of value-added

can predict out-of-sample achievement in the period where randomization, rather than se-

lection, determines student assignment to instructors. If the lagged achievement method

was remedying selection, α would be equal to 1. This policy test is akin to the exercise in

Kane and Staiger (2008) who assess whether a K-12 teacher’s estimated value-added in the

pre-experimental period predicts that same teacher’s value-added from a true randomized

experiment.

This out-of-sample test is similar to tests from the value-added literature where re-

searchers use value-added to predict the performance of students who move to a new school,

arguing that movers do not have the information necessary to select certain instructors. In

our setting, we directly control for student selection in the out-of-sample period using Pur-

due’s policy. This gives us a test that relies on conditional random assignment rather than

quasi-experimental variation in teaching rosters.
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Table 2. Conditional random assignment policy forecast
bias test for lagged achievement value-added at Purdue

Next-semester GPA
(1)

Lagged Achievement Value-added 0.332
(0.117)

N 163,653

Notes: The conditional random assignment policy forecast bias test
estimates the explanatory power of value-added estimated before Pur-
due’s algorithmic assignment policy on post-policy changes in stu-
dents’ GPA. The estimates come from a regression of residual next-
semester GPA for student-course pairs in the conditional random as-
signment policy period (2018-2023, where the residualization removes
preference controls to give conditional random assignment), on empir-
ical Bayes value-added estimated from 2011-2018. The value-added
estimates use the lagged achievement model. Standard errors are
clustered at the period-subject level. An estimate closer to 1 indi-
cates better controls for selection.

Column 1 of Table 2 shows the results of the policy forecast bias test for value-added

with lagged achievement. The forecast bias coefficient has a point estimate of 0.332, which

is again far from 1. This test’s results confirm that lagged achievement alone is not sufficient

to control for unobservable student selection.

The results in this section confirm that conventional controls from the K-12 value-added

literature are inadequate for addressing the student selection that is prevalent in higher

education. Without properly accounting for this selection, value-added estimates using these

established controls will be biased. At Purdue, our unique institutional setting — where

students with identical stated preferences for oversubscribed courses were randomly assigned

to sections — allows us to effectively control for this selection.

5 Augmenting Value-added with Course Histories

Unlike our previous application in Purdue, many universities do not have policies that restrict

student selection across instructors. We propose a method to control for student selection

on unobservables in the absence of such a policy: grouping students based on their “course

histories,” or the set of other courses that a student has taken. We demonstrate that control-

ling for course histories reduces bias to a degree comparable to conditional randomization

at Purdue. Having confirmed that our method performs as well as methods accepted in
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the literature, we further demonstrate the performance of our course histories controls in

estimating value-added to GPA and earnings for the 33 public universities in Texas in our

sample.

5.1 Estimating value-added with course histories

Student selection into instructors’ classes poses a challenge for value-added estimation when

the model fails to account for the unobservable factors driving this selection. This is because

those unobservables — such as preferences, ambitions, intentions, and latent abilities — are

likely correlated with students’ future outcomes. Returning to our example of the two types

of students who take Organic Chemistry — students who intend to go to medical school

and students who intend to become chemists — if these types select different instructors,

value-added estimates that do not account for this selection will be biased.

In this section, we argue that students may reveal their types through the courses they

have previously taken, and that we can use these past courses to make the relevant unob-

servables as good as observable for the purpose of estimating value-added. We call this set

of courses previously taken a student’s course history.25 A student’s course history may in

fact be a sufficient statistic for the effects of unobservable variables on selection into instruc-

tors’ classes. This is a somewhat subtle point. Of course, we cannot make unobservables

observable. What we can do, however, is focus on students within the same course history

“type” so that we compare only students who have the same unobservables.

The logic of this approach is familiar within education economics. In an influential

methodological paper, Dale and Krueger (2002) proposed a comparison of the earnings of

students who were admitted to the same set of colleges. In their case, the unobservables were

student aptitudes and preferences for various college attributes and colleges’ observations

of the students’ qualities that are only revealed in essays, campus visits, and interviews.

Two students with the same admission “portfolios” necessarily applied to the same colleges,

thereby revealing their unobserved preferences, motivations, and aptitude. Furthermore, two

students with the same portfolio must have been viewed as similar by admissions officers who

observe essays and interviews which are unobservable to the econometrician. Thus, argued

Dale and Krueger, application portfolios could plausibly make the unobservables that are

25In the estimation, we include both contemporaneous and past courses to better classify students earlier
in their academic careers. Since students typically enroll in courses before the semester begins, their choices
are made before being influenced by any instructor that semester. This approach also allows us to estimate
value-added for first-year students in their first semester, who would otherwise be viewed uniformly if we
only considered previously-taken courses.
At many universities, students adjust their schedules during the first few weeks of a semester. If instructor

impacts occur during this “shopping” period, our estimates could be biased. However, we expect instructor
effects to emerge later in the semester.
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relevant for college selection as good as observable. Put another way, two students with the

same portfolio might be so alike on unobservables (as well as observables) that their actual

college choices were plausibly random.

Similar to admissions portfolios, course histories contain rich information that may make

the unobservables relevant for instructor selection as good as observable. When students

choose courses, they take into account many of their own unobservables: career goals, mo-

tivation, research interests, and social networks. For example, medical school type students

choose to enroll in MCAT preparation courses in Psychology and Human Anatomy that

chemist type students would likely not take. Students also show that they anticipate suc-

ceeding in a course when they enroll, analogous to students applying to a college. Further-

more, students must actually succeed in a course for it to show up in their course history,

analogous to colleges’ admitting students. Whether or not course histories accomplish the

task of embodying unobservables is an empirical question we address in Sections 5.3 and 5.4.

Formally, we define a course history for student i in period t as the set of courses that

student i has chosen to enroll in during periods t′ ≤ t. To estimate value-added with course

history controls, we augment Equation 1 with a course history similarity group fixed effect

Hict:

A∗
ijsct = Xitβ + Cjsctγ +Hict + ρc + λt + µjs + ϵijsct. (8)

Hict partitions students taking course c during period t into groups based on the similarity

of their course histories. We create these course history similarity groups using hierarchical

clustering on the course histories of students enrolled in the same course, across instructors.26

We encode course histories as indicator vectors of all possible courses.27 Specifically, we

implemented hierarchical clustering with the goal of ensuring that students in the same group

would be similar on unobservable “types” that determine their instructor choice and future

outcomes. After clustering, approximately 30% of students are grouped into singletons. For

the main analysis, we exclude students in singleton groups. A robustness check in Appendix

D.2 shows that pooling all singleton students within each course and period into a single

reference group has little effect on the results.

26For additional details about our hierarchical clustering approach, see Appendix C.4.
27We do not partition the data further, such as by instructor or grade in previous courses, due to compu-

tational and data limitations. Incorporating these characteristics may be a direction for future research.
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5.2 Common sense checks of course history groups

Hierarchical clustering based on course histories often yields student groups that align with

common sense understandings of how past coursework signals future intentions. We pro-

vide three demonstrative examples of actual groups identified by our hierarchical clustering

method. Corresponding to each example, the panels of Appendix Table A-4 list the some

of the courses that appear most commonly in the course histories of these students, as well

as their average GPA and SAT scores. Note that all students in these examples were in the

course during the same semester.28

The first example is of two groups identified among students taking Organic Chemistry

at Texas A&M: “chemist types” and “medical school types.” Students in the first group took

courses typical of Chemistry or Biomedical Engineering majors: Engineering Mathematics,

Computational Engineering, Fundamentals of Chemistry, and courses from the Biomedical

Engineering program. In contrast, students in the second group commonly took courses in the

Health core, along with a Psychology course and a Sociology course strongly recommended

for MCAT preparation. These courses identify the second group as “medical school type,”

who are likely in Organic Chemistry to fulfill a medical school prerequisite.

The second example is of groups identified among students taking Intermediate Microe-

conomics, again at Texas A&M. Students in the first group had taken courses in the business

core, like Marketing, Accounting, and Management Information Systems while students in

the second group had taken courses in the Agricultural Economics program.29 The cluster-

ing, therefore, distinguishes “business” and “agricultural economics” type students enrolled

in Intermediate Microeconomics.

The third example highlights groups of students who took Calculus 3 at Purdue. Students

in the first group had most frequently taken Computer Science core courses, and are likely

“computer science” type students. Students in the second group had most frequently taken

engineering core courses, and many of the students had taken the course Computer Science

with applications to Engineering. These students are likely “engineering” type students.

These examples reveal a form of unobservable heterogeneity in students enrolling in the

same course: course histories allow us to categorize students into “types” that may reflect

latent differences in motivations, ability, or work ethic. To test whether these differences

could bias value-added estimates due to correlation with instructor selection, we conducted

Pearson’s χ2 independence test.30 For students in Organic Chemistry and Calculus 3, we

28We do not report the semesters for privacy.
29Texas A&M has a strong program in agriculture, which was the central focus of the university when it

was established as the Agricultural & Mechanical College of Texas in 1876.
30Appendix Table A-4 summarizes the p-values from these tests for each example.
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reject the null hypothesis that course history groups and instructor choice are independent

at the 5% level. For Intermediate Microeconomics, we reject this null at the 10% level.

This differential selection by course history group could not be fully controlled for by

lagged achievement alone. For instance, the “business” and “agricultural economics” type

students in Intermediate Microeconomics had nearly identical GPAs from the previous

semester, as did the “computer science” and “engineering” students in Calculus 3. De-

spite small differences in entrance exam scores, the distributions of both previous-semester

GPA and SAT scores show substantial overlap between groups for both courses.31 Thus,

controlling only for lagged achievement without accounting for course history groups would

involve comparisons across these distinct groups, leading to biased value-added estimates

for instructors, as students in different course history groups appear to have different future

intentions.32

While course histories address the selection challenge in these three examples, the ques-

tion of whether they address selection more broadly remains yet unanswered. In the next

section, we conduct forecast bias tests to show that course histories can indeed control for

student selection.

5.3 Forecast bias estimates for course history value-added at Purdue

To test whether controlling for course histories effectively addresses bias from students’

instructor choices, we apply the two forecast bias tests described in Section 4.2 to value-

added estimates that incorporate course history controls. Table 3 shows results from the

roster forecast bias test for course history value-added. We estimate jackknife value-added,

which excludes data from period t and t− 2 the value-added estimate, using course histories

for both the full Purdue panel and the period following the implementation of Purdue’s

conditional random course assignment policy.

The forecast bias estimates for value-added using course history controls show a large

improvement over estimates that control only for lagged achievement. On the full Pur-

due panel, the forecast bias coefficient is 0.910. When estimated solely during the post-

randomization period, the coefficient is 0.706, which is relatively close to the estimate ob-

tained from the conditional random assignment approach. We suspect that the shorter panel,

which overlaps with the Covid-19 pandemic, complicates value-added estimation during the

post-randomization period.

31See Appendix Figures A-1 and A-2.
32This issue may partly stem from the limitations of GPA and SAT scores as measures of student ability,

particularly in higher education. However, these are the most widely available metrics, and few institutions
provide better alternatives.
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Table 3. Teaching roster changes forecast bias test for
course history value-added at Purdue

Course Histories
Period: 2018-23 2011-23

(1) (2)

∆ average value-added 0.706 0.910
(0.123) (0.092)

N 810 5,785

Notes: The teaching roster changes forecast bias test leverages
year-to-year variation in teaching assignments to assess whether
changes in residual student achievement are predicted by shifts in
instructor value-added, with estimates regressing students’ residu-
alized next-semester GPA on changes in average jackknifed value-
added. Column (1) restricts to the conditional random assign-
ment period (2018-2023), while Column (2) shows estimates us-
ing. Both columns include course history controls. the full period
(2011-2023). Observations are at the subject-course level-period
level. Standard errors are clustered at the period-subject level.
An estimate closer to 1 indicates better controls for selection.

We also conduct the policy forecast bias test, which estimates value-added using data

from pre-2018 and predicts student outcomes from 2018-2023, controlling for student selec-

tion using the conditional random assignment policy. Table 4 compares the forecast bias

coefficient estimates for value-added estimated using lagged achievement controls and course

histories. Column 2 shows the results for course history value-added. With a point estimate

of 0.72, course histories address unobservable student selection much better than lagged

achievement alone.

Finally, we demonstrate that our instructor value-added estimates with controls for course

histories align with instructor value-added estimates that leverage conditional random as-

signment. Since we estimate course history and conditional random assignment value-added

using only students in non-singleton groups, the different measures estimate value-added for

slightly different groups of students.33 This sample difference means that these two measures

of value-added are somewhat different. To make the estimation samples more comparable,

we restrict the sample to the set of students who were in non-singleton groups and in non-

singleton course history groups.

Course history and conditionally random value-added methods generate very similar

rankings of instructors. The correlation between within-subject instructor ranks of value-

33A robustness check in Appendix D.2 shows that pooling all singleton students within each course and
period into a single reference group has little effect on the results.
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Table 4. Conditional random assignment policy
forecast bias test for course history value-added at
Purdue

Next-semester GPA
(1)

Course History Value-added 0.720
(0.069)

N 158,875

Notes: The conditional random assignment policy forecast
bias test estimates the explanatory power of value-added es-
timated before Purdue’s algorithmic assignment policy on
post-policy changes in students’ GPA. The estimates come
from a regression of residual next-semester GPA for student-
course pairs in the conditional random assignment policy pe-
riod (2018-2023, where the residualization removes preference
controls to give conditional random assignment), on empiri-
cal Bayes value-added estimated from 2011-2018. The value-
added estimates include course history similarity group fixed
effects. Observations are at the student-course-instructor-
period level. Standard errors are clustered at the period-
subject level. An estimate closer to 1 indicates better controls
for selection.
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added with course histories and within-subject instructor ranks value-added with conditional

randomization is 0.83. Rank comparisons between value-added estimates are an important

exercise since value-added is always a relative measure: quality is measured relative to the

mean, within a subject. Since course history and conditionally random value-added make

very similar distinctions between low- and high-value-added instructors, course history value-

added is indeed addressing student selection at Purdue.

5.4 Forecast bias estimates for course history value-added in Texas

The forecast bias tests in the previous section confirm that value-added estimates that control

for course histories substantially reduce bias in value-added estimation from student selection

to instructors. One highly appealing feature of this method is that it can be applied at any

university. For the rest of the paper, we focus our attention on value-added estimation in

Texas, where we have linked transcript-to-earnings data for 33 public universities.

In Texas, we estimate value-added for both next-semester GPA (as at Purdue) and future

earnings. Specifically, we estimate value-added to (log) earnings six years after a student

enters college.34

We first verify that these value-added measures are forecast unbiased. To do so, we apply

the teaching roster change forecast bias test, using quasi-experimental variation in teaching

rosters to identify the forecast bias coefficients. Figure 1 plots the forecast bias coefficient

estimate for each university, estimated with lagged controls only (the blue dots) and with

controls for course histories (the red dots).

The results of the forecast bias tests indicate that using course history controls effec-

tively accounts for unobservable student selection. As was the case in Purdue, value-added

estimates that control only for lagged achievement suffer from substantial forecast bias. For

value-added estimates of next-semester GPA, incorporating course histories significantly re-

duces forecast bias compared to using only lagged achievement. Most estimates fall between

0.8− 1.2, with many even closer, resulting in a median forecast bias estimate of 0.17. Simi-

larly, course histories help reduce forecast bias in value-added estimates of earnings. For all

but one university, course history controls reduce bias, with a median forecast bias of 0.15

for value-added to earnings.

These findings demonstrate that course history controls are effective at controlling for stu-

34Choosing the right year to measure earnings is challenging because students leave college, begin their
careers, and reach the steady state of their earnings at different times. Ideally, we would measure value-added
to earnings far enough into the future to avoid these timing issues. However, due to the relatively short
panel of earnings data, we select the six-year mark, as this is the earliest point where most students are on a
stable earnings trajectory and their earnings are high enough to exclude part-time jobs held during college.
Our results remain consistent when using alternative measures of earnings.
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Figure 1. Teaching roster changes forecast bias test for Texas universities

(a) Next-semester GPA (b) Log earnings six years post-entry

Notes: The teaching roster changes forecast bias test leverages year-to-year variation

in teaching assignments to assess whether changes in residual student achievement

are predicted by shifts in instructor value-added, with estimates regressing students’

residualized next-semester GPA on changes in average jackknifed value-added. Bias co-

efficients estimated separately for each Texas university, controlling for period-subject

fixed effects. Observations are at the subject-course level-period level. Standard errors

are clustered at the period-subject level. An estimate closer to 1 indicates better con-

trols for selection.

dent selection across a wide range of universities. Having addressed the bias in value-added

estimates, we next use estimates of instructor value-added to describe the characteristics of

highly effective instructors.

6 Impacts and Characteristics of High Value-added Instructors

Having developed a method for estimating instructor value-added in higher education, this

section uses our new method to assess whether instructors vary in their impacts on students’

outcomes. The results of this section reveal that instructors do, in fact, impact students’

future GPA and earnings. We then document that instructor characteristics explain very

little of the variation in value-added. Finally, we compare our value-added estimates to

students’ subjective evaluations of instructor quality.
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Table 5. Variances of value-added distributions

Next-semester GPA Log Earnings
(1) (2)

All 0.018 0.028
R1 0.022 0.036
Non-R1 0.016 0.025

Notes: Variance of the value-added distributions were
estimated within subject and institution, using max-
imum likelihood estimation, following Gilraine et al.
(2020). This table then shows student-course-period
weighted averages of these variances across subject and
institution. Universities are split according to their 2010
Carnegie classification: R1 universities have “very high
research activity.”

6.1 Instructors impact students’ future outcomes

Table 5 summarizes the estimated variances in value-added to both next-semester GPA

and future earnings, based on data from the Texas universities sample. These variances

are substantial, indicating that instructors have meaningful impacts on students’ short- and

long-term outcomes. Taking the square root of these variances provides estimates of the effect

of having an instructor with 1 standard deviation higher value-added than the average. We

find that an instructor with 1 s.d. higher value-added to GPA increases their students’

next-semester GPA by 0.13, which is approximately 4.5% of the mean. This GPA increase is

comparable to raising a student’s average grade from a B- to nearly a B. While this variance is

somewhat larger than the value-added variances observed for K-12 teachers in standardized

test scores, it aligns closely with estimates of value-added for college algebra instructors

on end-of-term exams DeVlieger et al. (2018). Instructors could influence students’ future

grades through multiple channels. For example, they may vary in their ability to enhance

students’ human capital, or they could affect students’ future course selections.

Instructors also affect students’ future earnings. An instructor with 1 s.d. higher value-

added to earnings increases students’ earnings by 17% six years after they enter college.35

Similar to value-added for GPA, instructors can influence future earnings through several

pathways, such as increasing human capital, improving graduation rates, or altering students’

35This estimate includes only students who have non-zero earnings in at least one quarter during the sixth
year post-matriculation. We observe earnings for more than 80% of the students in our sample. Students
without earnings data likely fall into two categories: those with no wage earnings during the year, and those
working outside Texas (since Texas UI data only capture in-state earnings). We speculate that the latter
group is larger. If out-of-state students have systematically different earnings than those working in Texas,
and if instructor choice is correlated with students’ likelihood of moving out of state, omitting these earnings
may introduce bias into our value-added estimates.
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field of study.

We find that the variance of instructor value-added varies across institutions. Rows 2

and 3 of Table 5 show average variance of value-added to next-semester GPA and earnings

separately for the R1 (high research intensity) and non-R1 universities, respectively. On

average, the variance of value-added to both GPA and earnings is higher at R1 universities

than at non-R1 universities. The larger variance of value-added to both grades and earnings

at R1 universities could be due to the fact that the the distributions of both next-semester

GPA and log earnings six years post-entry is are more skewed at R1 institutions than non-

R1 institutions. The average within institution and subject skew for next-semester GPA

is −1.47 at R1 institutions and −1.12 and non-R1 institutions. The average skew for log

earnings six years post-entry is −1.43 at R1 institutions and −1.43 at non-R1 institutions.

The patterns for earnings is intuitive: since more students at higher-ranked universities have

higher “upside” jobs, especially immediately post graduation, instructors may have more

ability to impact the early career earnings of their students.

Figure 2. Distribution of subject-level variance in course history value-added

(a) Next-semester GPA (b) Log earnings six years post-entry

Notes: Smoothed kernel density plot of average variances of value-added across subjects

within an institution. Variance of the value-added distributions were estimated within

subject and institution, using maximum likelihood estimation, following Gilraine et al.

(2020).

Additionally, Figure 2 shows smoothed density plots of average value-added to future

GPA and earnings within institution. Average value-added to GPA is relatively compressed,
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with variances between 0.006 and 0.038, corresponding to grade increases of 0.08 to 0.19

for moving to a 1 s.d. better instructor. Average value-added to earnings is more spread,

with variances between 0.008 and 0.08, corresponding to income increases of 9% to 28% for

moving to a 1 s.d. better instructor.

Table 6. Variances of value-added for selected subjects

Next-semester GPA Log Earnings
(1) (2)

All 0.018 0.028
Biology 0.016 0.036
Computer Science 0.026 0.046
Education 0.020 0.014
Engineering 0.024 0.053
Social Sciences 0.015 0.021

Notes: Variance of the value-added distributions were estimated
within subject and institution, using maximum likelihood estimation,
following Gilraine et al. (2020). This table shows student-course-
period weighted averages of these variances, across institution and
within 2-digit CIP codes.

We also find that instructor impacts vary across subjects. Table 6 summarizes the average

variance in instructor value-added across institutions, aggregated by two-digit CIP code.36

The first column of the table summarizes the variance in value-added to next-semester GPA.

Fields with large fractions of in-major students taking courses, such as Computer Science and

Engineering, have higher variance of value-added to GPA. In contrast, fields like Biology and

Social Sciences, which offer more courses to non-major students, show smaller variances in

instructor value-added to GPA. One possible explanation for these differences is the likelihood

that students will continue taking courses in these fields, which may influence the variance

in value-added. Indeed, we find that the correlation between mean average value-added to

next-semester GPA and mean persistence in the subject is positive (0.32).

The second column of Table 6 reports the variance in value-added to future earnings.

The smallest variances in earnings value-added are in fields like Education, and the Social

Sciences, while the largest are in Computer Science and Engineering. One interpretation of

these findings is that instructors have more influence on future earnings in fields that lead to

careers with greater income variability. Indeed, we find that a subject’s variance in earnings

and the variance in value-added for instructors in that subject are positively correlated

(0.29). Intuitively, earnings for graduates in Engineering and Computer Science can differ

36CIP stands for Classification of Instructional Programs. These identifiers from the National Center of
Education Statistics allow us to compare majors across institutions even when institutions have different
major prefixes.
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significantly based on job placement, and the higher variance in value-added suggests that

instructors may play a critical role in equipping students with the skills needed to secure

high-paying jobs. In contrast, graduates in Education, who often become teachers, typically

have earnings determined by standardized pay scales, which show little variation within

the same cohort. The average standard deviation of log earnings for students in Education

courses is 0.64, much lower than for students in Engineering or Computer Science courses

(0.75 for both subjects).37 These results highlight the role of major choice as a central factor

mediating the impact of instructor value-added on future earnings.

6.2 Characteristics of high-quality instructors

Fixed instructor characteristics explains little of the variation in value-added. Table A-3

shows regressions of standardized estimates of value-added on a set of instructor characteris-

tics in Texas: rank, race/ethnicity, gender, age and salary.38 Note that since value-added is

estimated and normalized within institution and subject, these fixed effects are not picking

up differences in the allocation of instructors with high value-added across subjects. The

R2 in both regressions is small, with values of 0.016 for value-added to GPA and 0.009 for

value-added to earnings. This result aligns with some of the value-added literature in K-12,

which finds that observable characteristics do little to predict teacher value-added.39

Although instructor characteristics do not account for the variation in value-added, we

still observe some heterogeneity in average value-added across different instructor character-

istics. Table 7 summarizes the estimates from separate regressions of standardized value-

added on various instructor characteristics. The coefficients represent the difference in av-

erage value-added associated with a given characteristic, relative to the omitted category

(respectively: assistant professors, white, male, and native-born). Value-added estimates

are standardized, so the interpretation of the coefficient is standard deviation difference in

average value-added for a given outcome for instructors having a given characteristic rela-

tive to the base category. Additionally, for rank and race regressions, in Panels A and B,

we report p-values for an F-test of coefficient equality as there are multiple categories. It is

37Standard deviations were averages taken across institutions within a subject, weighted by number of
student-course-period observations.

38Since our primary value-added estimates are fixed across time, we take the modal observed academic
rank.

39Seminal work by Hanushek (1971) and Ehrenberg and Brewer (1994) suggest that characteristics of
K-12 instructors are only weak predictors of student achievement, while more recent work suggests that
other factors, such as principal evaluations and certifications, predict achievement (Jacob and Lefgren, 2004;
Clotfelter et al., 2007). In higher education, some work has studied differences in instructor impacts between
tenure-track and contingent faculty. There is little consensus in this area: previous work has found adjunct
instructors to improve (Bettinger and Long, 2010; Figlio et al., 2015), reduce (Ehrenberg and Zhang, 2005),
or have no effect on student achievement relative to tenure-track instructors.
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Table 7. Heterogeneity in value-added across instructors

Value-added

GPA Earnings
(1) (2)

A: Academic Rank
Full Professor -0.026 0.019

(0.017) (0.020)
Associate Professor -0.021 0.071***

(0.018) (0.021)
Non-Tenure Track -0.005 0.047**

(0.014) (0.015)
N 69,475 62,790
F-test 0.218 0.052

B: Race
Asian -0.040** -0.030**

(0.015) (0.013)
Black -0.051*** -0.020

(0.013) (0.015)
Hispanic 0.016 0.008

(0.016) (0.014)
N 69,537 62,851
F-test 0.001 0.090

C: Female -0.002 0.013
(0.014) (0.010)

N 69,537 62,851

D: International -0.061*** -0.007
(0.012) (0.011)

N 69,537 62,851

Notes: Estimates are from separate regressions of value-added on in-
structor characteristics, where each column in each panel estimates a
separate regression. The omitted instructor rank category in Panel
A is Assistant Professor; the omitted race in Panel B is white. Re-
gressions control for subject and institution, with observations at the
instructor level. Standard errors are clustered at the institution level.
Value-added values are standardized, so the interpretation of the co-
efficient is standard deviation difference in average value-added for a
given outcome for instructors having a given characteristic relative to
the base category.
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important to note that for some instructors who began teaching in later years, we cannot

estimate value-added to earnings, as our estimation requires us to observe earnings up to six

years after a student takes a given course.

In Panel A, we highlight the regressions by academic rank. While there are no signif-

icant differences in value-added to GPA across ranks, we do find significant differences in

value-added to earnings. On average, full professors have similar value-added to assistant

professors, whereas associate professors and contingent instructors exhibit significantly higher

value-added than assistant professors.40 Additionally, an F-test rejects the null hypothesis

that these coefficients are equal.

6.3 Correlation between value-added and student evaluations

In the absence of quantitative measures of instructor quality, many universities rely on stu-

dent evaluations to assess teaching effectiveness. In this section, we investigate whether these

subjective evaluations align with instructor quality as measured by value-added. To conduct

this analysis, we scraped teaching evaluations for all courses from Texas Tech covering 2006-

2023. We calculated average evaluation scores for each instructor over these periods and

merged these averages with the corresponding value-added estimates.

The student evaluation surveys vary slightly across years and incorporate a wide variety

of questions. To create a standardized measure, we focused on three types of questions that

appeared in all years. Questions in the “Instructor Score” and “Course Score” categories

capture students’ general impressions of the instructor and the course. Questions in the

“Teaching Score” category specifically assess the instructor’s effectiveness in teaching and

conveying material. We standardized these average evaluation scores within each subject

and institution to ensure comparability across time and courses.41

The first two columns of Table 8 summarize bivariate regression estimates of the relation-

ship between instructor value-added to GPA and earnings on these aggregated evaluation

scores. Instructor value-added scores in each column are standardized within subject to be

on a common scale. The first column shows that value-added to GPA and evaluation scores

are significantly correlated. The largest coefficient indicates that on average, instructors

with 1 s.d. better Teaching Score evaluations have 0.102 s.d. higher value-added to GPA. In

contrast, we find that instructor value-added to earnings is not significantly correlated with

any student evaluation score, again suggesting that there are within-instructor differences

40These findings are consistent with Figlio et al. (2015), who report higher levels of student learning
in first-semester courses taught by contingent faculty compared to tenure-track faculty at Northwestern
University.

41For the exact questions and categorizations, see Appendix E. Additionally, we show correlations with
two other categories of questions that were only available for part of our panel.
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between value-added to GPA and value-added to earnings.

Table 8. Comparison of instructor value-added to stu-
dent evaluations

Value-added

GPA Earnings Leniency
(1) (2) (3)

A: Instructor Score 0.082*** -0.004 0.163**
(0.019) (0.022) (0.051)

N 3,204 2,956 3,531
R2 0.008 0.000 0.028

B: Teaching Score 0.102*** -0.007 0.157***
(0.023) (0.023) (0.046)

N 3,204 2,956 3,531
R2 0.012 0.000 0.024

C: Course Score 0.088*** -0.015 0.169***
(0.020) (0.025) (0.049)

N 3,204 2,956 3,530
R2 0.009 0.000 0.030

Notes: Estimates are from separate bivariate regressions of in-
structor and course quality measures, based on student evalua-
tions, on instructor value-added or leniency. Evaluations are from
Texas Tech between 2006-2023. The specific questions related to
instructor, teaching, and course quality are detailed in Appendix
E. Leniency is defined as the difference between an instructor’s
average grades and the average grades given by other instructors
teaching the same subject at the same level. All student evalua-
tion scores, value-added, and leniency measures are normalized.
Regressions control for institution, with observations at the in-
structor level. Standard errors are clustered at the subject level.

Motivated by previous work suggesting that student evaluations distort grading incen-

tives in the classroom (Nelson and Lynch, 1984; Eiszler, 2002), we also investigate whether

instructors who assign higher grades to students receive higher evaluation scores. In the

third column of Table 8, we assess the relationship between student evaluations and in-

structor leniency to explore whether students prefer easier courses. We measure leniency by

calculating the difference between the average grades assigned by an instructor in a course

and the average grades given by other instructors teaching similar courses. The measures of

leniency are then standardized within subject for comparability of estimates.

Instructors who are more lenient tend to receive higher ratings. For example, an in-
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structor with 1 s.d. higher course quality scores has 0.169 s.d. higher leniency scores. Fur-

thermore, the correlation between leniency and evaluations is stronger than the correlation

between value-added to GPA and evaluations. For each category of evaluation questions,

the correlation with leniency is approximately twice the magnitude of the correlation with

value-added. This provides suggestive evidence that students favor instructors who assign

higher grades.42

7 Policy Implications

Since student evaluations are relatively uncorrelated with measures of instructor value-added,

we consider policies that would make personnel decisions based on value-added rather than

the current policy that relies only on student evaluations. Using student evaluations from

Texas Tech, we find that evaluation scores are predictive of retention, especially for instruc-

tors in the bottom 5% of the evaluation distribution. We then benchmark the possible gains

using two deselection exercises: one that replaces the bottom 5% of instructors, motivated

by work in Hanushek (2009) and Chetty et al. (2014b), and one that uses the estimated

relationship between evaluations and retention. Both find gains to selecting instructors on

value-added to earnings relative to selecting students on student evaluations.

7.1 Student evaluations and retention of contingent instructors

To understand how institutions actually use student evaluations in personnel decisions, we

investigate the relationship between the student evaluations an instructor receives and their

probability of teaching at the same institution the next year. For this exercise, we focus

on contingent instructors at Texas Tech, as contingent instructors are less likely to have

longer-term employment contracts restricting termination.

We define “retention” Rj,s,y+1 of a given contingent instructor j in subject s as an in-

dicator for whether that instructor is teaching a course again in subject s at Texas Tech

during the next academic year. We then calculate the average “Instructor Score” Sj,s,y from

student evaluations for instructor j in subject s during year y. We predict retention with

the evaluation score both linearly and non-linearly, using

Rj,s,y+1 = Sj,s,y + λs + ϵj,s,y (9)

Rj,s,y+1 =
19∑
v=1

Sv
j,s,y + λ′s + ϵ′j,s,y, (10)

42Note that in this exercise, we do not control for backgrounds of students when constructing leniency
measures.
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where Sv
j,s,y is an indicator for instructor j having an evaluation score in the vth vigintile

within subject s during year y, with the top vigintile as the reference group. We also estimate

these equations, adding controls for estimates of value-added and vigintiles of estimated

value-added, respectively.

We find that student evaluation scores predict retention. Appendix Table A-5 shows

results from the linear regressions from Equation 9, with and without value-added estimates.

Both regressions show that evaluations significantly predict retention. An instructor with 1

s.d. better evaluation scores is 4 percentage points more likely to be retained, on average,

which is about 5% of the mean, or roughly 10% of a standard deviation. Neither measure of

value-added significantly predicts retention. The estimates of coefficients on value-added in

Column 2 are an order of magnitude lower than the corresponding estimates for evaluation

scores.

We also find that student evaluation scores and retention have a non-linear relationship.

Appendix Table A-6 shows results from the vigintile regression in Equation 10. The bottom

5% of instructors is significantly less likely to be retained than other groups. Relative to

the omitted top 5%, instructors in the bottom 5% are nearly 30% less likely to be retained.

The bottom 5% is also less likely to be retained than the next lowest vigintile. The top left

panel of Figure 3 shows a binned scatter plot of retention against evaluation scores. Above

the bottom 5%, evaluations and retention have a somewhat linear relationship. However,

the likelihood of retention plunges for the instructors who receive the worst evaluations.

Additionally, the other two panels of Figure 3 show that value-added does not have a strong

relationship with value-added.

The drop in retention rates for contingent instructors in the bottom 5% of the student

evaluation distribution is notable. Moreover, deselection in this range aligns with work by

Hanushek (2009) and Chetty et al. (2014b), which discuss potential gains in K-12 student

achievement under policies that deselect instructors of the bottom 5% based on value-added

measures. In Section 7.2, we perform a back-of-the-envelope counterfactual exercise, using

the value-added distribution as a basis for deselecting instructors, rather than the current

approach, to assess the potential benefits of incorporating value-added in instructor evalua-

tions. In Section 7.3, we conduct an additional exercise that uses the estimated relationship

between retention and student evaluations to assess the benefits to using value-added in

evaluations of contingent instructors in a more realistic way.

7.2 Full deselection using value-added

To assess the possible gains from using value-added to evaluate instructors instead of stu-

dent evaluations, we conduct back-of-the-envelope calculations in the spirit of Chetty et al.
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Figure 3. Retention rates and instructor quality at Texas Tech

Notes: Binned scatter plots of retention indicators against three measures of instruc-

tor quality for contingent instructors at Texas Tech: evaluations, value-added to GPA

and value-added to earnings. Each point plots the average retention against average

instructor quality measure within vigintiles of instructor quality measures. Addition-

ally, we show the best fit lines from a regression of retention on the instructor quality

measure. All variables are residualized on subject and year.

(2014b). This exercise is motivated both by the deselection suggestion in Hanushek (2009)

and by our empirical finding that, at Texas Tech, instructors in the bottom 5% of the eval-

uation distribution do indeed seem to be retained at much lower rates.

First, we calculate the average per-student increase in earnings six years post-college entry

from replacing an instructor in the bottom 5% of the value-added to earnings distribution

with a mean instructor. The ingredients of this calculation are as follows: assuming a

normal distribution of value-added, an instructor in the bottom 5% is, on average, 2.063

standard deviations from the mean instructor; the standard deviation of the value-added

36



to log earnings distribution is 0.17; and the median of quarterly earnings in our sample is

$8,638. We use median earnings instead of mean earnings to limit the effects of outliers.

The average per-student increase in earnings six years post-college entry from replacing an

instructor in the bottom 5% is:

G = 2.063× $8, 638× 0.17 = $3, 029

or, about 35% of median student earnings. These gains are substantial.43

In order to investigate how de-selecting certain groups of instructors could impact earn-

ings, we conduct an additional back-of-the-envelope calculation that uses subject-institution-

specific variances of value-added. First, we identify each instructor in the bottom 5% of the

value-added distribution within their subject and institution. We then calculate the gains

in earnings from replacing six groups of instructors with the mean instructor, within each

subject and institution: replacing all instructors in the bottom 5%, and replacing instructors

of each rank separately who are in the bottom 5% of instructors, for contingent instructors,

assistant professors, associate professors, full professors, and all Tenure Track instructors.

Table 9 reports results from this exercise. Both income and gains in income from replace-

ment are highly skewed distributions, so Panel A, which presents gains from replacing all

bottom 5% instructors, shows the median gain. The median increase in quarterly earnings

six years post-entry from replacing all bottom vigintile instructors is $2, 644, or about 30% of

median earnings. This substantial gain is primarily driven by two factors. First, the estimate

is driven by our relatively large estimate of the variance of the distribution of value-added to

earnings. Second, and perhaps more surprisingly, most students at Texas Tech take at least

one course from a bottom 5% instructor, so the proposed policy impacts many students.

Though most students have at least one bottom 5% instructor, when we split up the policy

to replace instructors of different types, the median earnings gain is 0 in every case. To limit

the effects of outliers for Panel B, we report the winsorized mean of affected students, scaled

by the fraction of affected students, to measure the average gains from replacing the relevant

group of bottom 5% instructors. We find that the largest gains are from replacing contingent

instructors. The average gain from replacing all bottom 5% contingent instructors is 3, 850,

which is about 42% of the mean.44 Replacing instructors in the bottom 5% of assistant,

associate, and full professors would result in smaller gains.

43Note that in this section, we treat estimated value-added as true value-added. Accounting for estimation
error encompasses scaling estimates by their reliability, and would shrink the estimates of gains somewhat.
In the next section, we address this issue in another exercise.

44Note that if we calculate the gains from replacing all instructors in this way rather than report the
medians, the gains are larger than the gains from replacing only tenure-track instructors as shown in Row 1
of Panel B.
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Table 9. Average gains for deselection of the bottom 5%

Average Gain Percent Gain over Average Earnings
(1) (2)

A: Medians
Replace All $2,644 30.61%

B: Means
Replace All $6,182 68.43%
Replace Contingents $3,850 42.62%
Replace Assistants $1,155 12.79%
Replace Associates $1,478 16.36%
Replace Full Professors $1,511 16.72%
Replace Tenure Track $2,749 30.43%

Notes: Estimates are average gains to replacing instructors in the bottom 5% of the value-
added distribution within each of the given categories. Column 1 shows average dollar gains
from the replacements. Column 2 shows the percent gain of the row over average earnings,
which has a median of $8,638 and mean of $9,033. Means in Panel B were constructed by
averaging winsorizing gains for students with non-zero gains, then multiplying by the fraction
of students with non-zero gains.

7.3 Partial de-selection using value-added

A central insight from the analysis in Section 7.1 is that the university’s retention policies

are constrained, as many instructors cannot be dismissed due to tenure or other long-term

contracts. Even among contingent instructors with low student evaluations, the likelihood of

retention is still greater than 50%. Given the frictions in the academic labor market, it may

not be feasible — or even desirable — to replace 5% of instructors annually. Within these

constraints, this section explores the potential gains from an alternative retention program

that maintains the current number of annual replacements but bases retention decisions on

instructors’ value-added rather than student evaluations. By design, such a policy would

lead to modest improvements in students’ earnings.

The exercise in this section focuses on Texas Tech. We begin by predicting the probability

that a contingent instructor j will be retained in year y. We construct this probability in

two ways: first, by using the prediction given from our estimates of Equation 10 to show a

baseline for if the institution actually used the predicted evaluation policy, and second, by

applying the estimated model to vigintiles of value-added to earnings instead of to vigintiles

of evaluations. This gives us two probabilities of retention: R̂j,y(SQ), the “status quo”

probability of retention and R̂j,y(V A), the “value-added” probability of retention. To account

for differing retention rates, the regressions and predictions included year and subject fixed
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effects. For instructors that cannot be replaced by the policy (tenure-track instructors,

teaching assistants, and first-time instructors) we assign both retention probabilities as 1.

The model gives a probability that an instructor is retained at each value of their stu-

dent evaluation score. We estimate average earnings changes using the predicted retention

probabilities for the full range of student evaluation scores, as well as a more plausible policy

that only uses these retention probabilities for replacing the bottom 5% of instructors.

Given these retention probabilities, the value-added standardized within a subject, µz
j,s,

the subject-specific variance of value-added to earnings, σ2
µ,s, and student i’s earnings six

years post-entry, Yi, the predicted gains Gi(a) for student i under replacement regime a

are:45

Gi(a) =

Ti∑
t=1

Ni∑
j=1

(
(1− R̂j,y(a))×−µz

j,s × σµ,s × Yi

)
.

Note that these gains are still infeasible, in the sense that we treat µ̂z
j,s as true value-added

for instructor j instead of estimated value-added. We also estimate more feasible gains to the

policy by scaling each instructor’s value-added estimate by the reliability of their estimate,

r(j, s), from the empirical Bayes estimation.46 This results in a gain of

FGi(a) =

Ti∑
t=1

Ni∑
j=1

(
r(j, s)× (1− R̂j,y(a))×−µz

j,s × σµ,s × Yi

)
.

Table 10 shows average infeasible and feasible gains for these policies. Columns 1 and 2 show

changes from the “status quo” policy. In fact, under a policy that replaces all instructors

based on the evaluation retention probabilities (i.e. allowing the probability of retention to

vary across the full distribution of evaluation scores, regardless of whether their score is in the

bottom 5% of scores overall), students’ average earnings would be lower than actual student

earnings, on average. However, because the status quo is an approximation of the true policy

that the university uses, these changes are small in magnitude, at about 0.2% of the mean.

Applying the evaluation-based retention policy but only changing retention probabilities for

instructors with evaluations in the bottom 5% would increase students earnings on average,

but the gains are again small in magnitude at about 0.1%.47

On the other hand, replacing instructors based on value-added would increase student

earnings substantially. Columns 3 and 4 report gains from a policy that replaces contingent

instructors with probability proportional to their relative position in the distribution of

45Note that we treat the gains additively to simplify the calculation.
46Appendix C.2 gives the exact formula
47We do not report feasible gains or losses from the evaluation-based retention policy, but they would be

even smaller in magnitude than the feasible gains.
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value-added to earnings. Panel A shows that the gains from the infeasible replacement

for all contingent instructors using value-added would increase average student earnings by

about $300, or by about 3% of mean earnings. Furthermore, we find that replacing only

the bottom 5% of instructors would have nearly as large of an effect. Replacing the bottom

5% of instructors using the infeasible policy predicts an average earnings increase of roughly

2.6%. The feasible policy that treats value-added as an estimate predicts very similar gains

as the infeasible policy. Panel B shows that the gains to replacing all contingent instructors

based on the retention policy but using value-added would increase earnings by about 2.7%,

and the gains to replacing only the bottom 5% are 2.2%.

One limitation of this exercise is that even our estimates of feasible gains from replacing

instructors using value-added ignore the fact that these value-added estimates use data

from the whole sample. A true feasible policy exercise would restrict to using data from

previous periods to predict retention, as is the case for evaluations. Our earnings value-

added estimates are not ideal for this exercise, as the data needed to estimate value-added,

earnings six-years post entry, do not materialize until up to six years after an instructor

teaches a course with a student.

There are two alternative strategies for a feasible exercise. The first is to change the

university’s objective: students with higher grades are more likely to graduate, so a university

might be interested in using estimates of instructor value-added to next-semester GPA to

evaluate instructors. A second possibility is to use a measure of value-added that is correlated

with value-added to earnings. The gains to using such a measure would have smaller effects

on earnings, proportional to the correlation between the two measures.

8 Conclusion

Instructors play an important role for the production of human capital in post-secondary

education. However, estimates of post-secondary instructor impacts have, thus far, been

limited to a small set of unique institutions with uncommon enrollment policies. Further-

more, these impacts have generally been measured in terms of within-course standardized

assessments for a small set of courses. Due to the identification and measurement challenges

associated with estimating value-added, most universities use subjective student evaluations

to assess instructor quality and make personnel decisions.

In this paper, we propose and validate a non-experimental method for estimating instruc-

tor value-added that can be applied broadly in higher education. We show that students’

“course histories” reveal otherwise unobservable information about student types that, when

controlled for, substantially reduces forecast bias in value-added estimates. After addressing
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Table 10. Average gains for policy-based deselection at Texas Tech

Evaluations Value-added to Earnings
Avg Gain % Gain Avg Gain % Gain

(1) (2) (3) (4)

Panel A: Infeasible
Replace All Contingent -$23 0.238% $301 3.117%
Replace Bottom 5% Contingent $12 0.124% $250 2.586%

Panel B: Feasible
Replace All Contingent $260 2.690%
Replace Bottom 5% Contingent $209 2.164%

Notes: Estimates are average gains to replacing contingent instructors at Texas Tech using coeffi-
cients from a regression of retention on student evaluation vigintiles with subject-year fixed effects.
Panel A shows infeasible gains, which treat value-added estimates as true value-added and Panel B
shows feasible gains, which scale by the reliability for each instructor. Columns 1 and 2 show gains
for using predictions generated by the actual regression that predicts retention with evaluations,
and 3 and 4 show gains from replacing vigintiles of evaluations with vigintiles of value-added to
earnings in the prediction. Columns 1 and 3 show average gains in dollars while even columns
show percentage gains over mean earnings at Texas Tech, which was $9,651. Row 1 of both panels
show gains from replacing all contingent instructors according to the rule and Row 2 of both panels
shows gains from replacing instructors only in the bottom 5% of the value-added distribution.

the identification and measurement challenges, we document large variation in instructor

impacts on students within a subject. Specifically, a student who moves to a 1 s.d. bet-

ter instructor within a course would improve their next-semester grades by 0.13 points and

increase their income by 17. Furthermore, we document that student evaluations and in-

structor value-added to earnings six years post-college entry are essentially uncorrelated,

highlighting a shortcoming of the use of evaluations in making personnel decisions. We esti-

mate that a policy to deselect contingent instructors which uses value-added to earnings in

place of student evaluations could increase student earnings by 2.7%.

Our method, which uses students’ past and present course choices to control for selection

to instructors, provides new opportunities for institutions to evaluate their instructors and

opens new avenues for researchers to investigate the higher education production function.

For example, in the paper, we focused our attention to instructor effects averaged across all

students. Future research could investigate heterogeneous instructor effects by race, gender,

or ability.48

We view our two outcomes, next-semester GPA and income, as spanning a wide variety

of outcomes which could be useful to students and institutions. At one end, semester GPA

48Eastmond et al. (2023) and Bates et al. (2024) are two examples of this type of heterogeneous estimation
in K-12.
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provides measures of student academic ability that are related to graduation and available

in real time. However, GPAs are likely a noisy measure of student ability, and reflect both

students’ performance in future courses and characteristics of courses students select in the

future (such as grading norms in the subject a student selects). At the other end, income

is an outcome tied to well-being and ability that is widely comparable, but is realized with

such a long lag that it may not be desirable for making short-term personnel decisions. We

expect that our method can be applied to other outcomes of interest in higher education

that lie between GPA and earnings, such as major choice or time to degree.49 These more

intermediate outcomes could both provide institutions with metrics of instructor quality that

both are correlated with earnings and give insight into the mechanisms behind the instructor

impacts we document in this paper.

49For example, Jackson (2018) provides evidence in K-12 that the same strategies to estimate value-added
to standardized test scores can produce unbiased estimates of value-added to non-cognitive outcomes.
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Tomáš Müller, Keith Murray, et al. Comprehensive approach to student sectioning. Annals

of Operations Research, 181(1):249–269, 2010.

Kevin J Mumford, Richard Patterson, and Anthony Lokting Yim. College course shutouts.

Technical report, CESifo, 2024.

NCES. Integrated postsecondary education data system (ipeds), 1995-2022. Accessed: 2022-

12-01.

Jon P. Nelson and Kathleen A. Lynch. Grade inflation, real income, simultaneity, and

teaching evaluations. The Journal of Economic Education, 15(1):21–37, 1984. doi:

10.1080/00220485.1984.10845044. URL https://www.tandfonline.com/doi/abs/10.

1080/00220485.1984.10845044.

46

https://jhr.uwpress.org/content/XXXIX/1/50
http://www.jstor.org/stable/10.1086/522974
http://www.jstor.org/stable/10.1086/522974
http://www.nber.org/papers/w14607
https://ideas.repec.org/a/aea/aecrev/v76y1986i4p604-20.html
https://ssrn.com/abstract=3202050
https://www.tandfonline.com/doi/abs/10.1080/00220485.1984.10845044
https://www.tandfonline.com/doi/abs/10.1080/00220485.1984.10845044


Nathan Petek and Nolan G. Pope. The multidimensional impact of teachers on students.

Journal of Political Economy, 131(4):1057–1107, 2023. doi: 10.1086/722227. URL https:

//doi.org/10.1086/722227.

Jonah E. Rockoff. The impact of individual teachers on student achievement: Evidence from

panel data. The American Economic Review, 94(2):247–252, 2004. ISSN 00028282. URL

http://www.jstor.org/stable/3592891.

Evan K Rose, Jonathan Schellenberg, and Yotam Shem-Tov. The effects of teacher quality

on adult criminal justice contact. Working Paper 29555, National Bureau of Economic

Research, July 2022. URL http://www.nber.org/papers/w29555.

Jesse Rothstein. Teacher Quality in Educational Production: Tracking, Decay, and Student

Achievement*. The Quarterly Journal of Economics, 125(1):175–214, 02 2010. ISSN

0033-5533. doi: 10.1162/qjec.2010.125.1.175. URL https://doi.org/10.1162/qjec.

2010.125.1.175.

47

https://doi.org/10.1086/722227
https://doi.org/10.1086/722227
http://www.jstor.org/stable/3592891
http://www.nber.org/papers/w29555
https://doi.org/10.1162/qjec.2010.125.1.175
https://doi.org/10.1162/qjec.2010.125.1.175


Population Texas Sample Purdue

mean sd mean sd

Enrollment 11,639 11,823 18,107 15,327 40,555
Admit rate 0.78 0.18 0.83 0.15 0.53
SAT-equivalent: 25 pctile 954 144 975 130 1,180
SAT-equivalent: 75 pctile 1,182 127 1,167 125 1,410
Average tuition 19,338 8,724 19,509 7,258 28,520
Average price 13,766 4,172 11,774 2,999 11,898
Student-faculty ratio 16.68 4.54 19.36 3.34 13
Contingent instructors % 0.20 0.14 0.27 0.11 0.13
6-year graduation rate 0.52 0.16 0.44 0.16 0.81
Has a doctoral program 0.41 0.49 0.48 0.51 1.00
R1 (very high research in-
tensity)

0.12 0.33 0.09 0.29 1.00

R2 (high research inten-
sity)

0.12 0.33 0.18 0.39

Other Carnegie classifica-
tion

0.75 0.43 0.73 0.45

N 592 33 1.00

Table A-1. Comparison of institution characteristics.

A Appendix Tables and Figures

Figure A-1. Lagged achievement for business and agricultural econ types in intermediate
micro a Texas A&M

(a) Lagged GPA (b) Entrance Exam Percentile

Notes: This figure shows smoothed kernel density plots for students in two different

course history groups taking Intermediate Micro in the same semester at Texas A&M.
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Table A-2. Student Characteristics

All R1 Non-R1

mean sd mean sd mean sd
Next-Semester GPA 2.96 0.90 3.06 0.85 2.87 0.95
Last Semester GPA 2.99 0.72 3.07 0.69 2.90 0.75
Admissions Exam Percentile 52.97 16.85 62.01 16.99 43.60 16.70
Log Earnings Six Years Post-Entry 8.86 0.73 8.92 0.75 8.80 0.72
Has Income Six Years Post-Entry 0.72 0.44 0.69 0.46 0.75 0.43
Bachelor’s Attainment 0.70 0.43 0.71 0.42 0.68 0.44
Age 21.53 4.33 21.13 3.71 21.94 4.96
Female 0.54 0.47 0.50 0.48 0.58 0.46
Hispanic 0.33 0.42 0.32 0.43 0.35 0.40
Black 0.13 0.29 0.09 0.28 0.17 0.31
Asian 0.10 0.26 0.14 0.31 0.06 0.20
Number of Students in Section 68.93 60.94 89.28 85.96 47.85 35.03

Notes: This table shows summary statistics for most of our standard control variables for students
in Texas. This table takes observation-weighted averages across institutions and subjects. The
first two columns use data from all institutions. The next columns split universities by their 2010
Carnegie classification: R1 universities have “very high research activity.”

Figure A-2. Lagged achievement for computer science and engineering types in calculus 3
at Purdue

(a) Lagged GPA (b) SAT Score

Notes: This figure shows smoothed kernel density plots for students in two different

course history groups taking Calculus 3 in the same semester at Purdue.
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Figure A-3. Course Enrollment Request Form at Purdue
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B Purdue’s Course Registration Algorithm

As discussed by Mumford et al. (2024), Purdue University assigns undergraduate courses

using a distinctive course registration algorithm developed by Müller et al. (2010). This

algorithm processes students’ ranked course preferences as input data to generate schedules

for the entire student body. It prioritizes fulfilling primary course requests while minimizing

reliance on alternative requests . Each request is weighted according to the following formula:

weight(a ∈ dom(R)) = 0.9prior(R) × 0.5alt(a), (11)

where prior(R) is the ranking of the requested course, and alt(a) represents alternate

course preferences. To illustrate, consider the course enrollment request form in Figure A-

3. The weight for a first-choice course with no alternatives is 0.9, while second and third

choices receive progressively lower weights. The algorithm solves this allocation problem us-

ing Iterative Forward Search (Müller et al., 2004), and imposes a higher penalty for rejecting

priority-only requests compared to those with alternatives.

The course assignment process follows four key constraints:

1. Seat limits: Each course section has a fixed number of seats, though some, such as

online courses, may have no limit.

2. Overlapping sections: Students cannot be enrolled in overlapping course sections.

3. Distance conflicts: Sections scheduled too close together geographically are avoided

unless there is more than a 20-minute gap between them.

4. Course reservations: Some courses reserve spots for students with specific majors.

C Estimation Details

C.1 Estimating variances of instructor value-added and individual error

We estimate the variances of instructor value-added σ2
µ and individual error σ2

ϵ using max-

imum likelihood estimation, following Gilraine et al. (2020). First, we residualize the out-

comes A∗
ijct as in Equation 3. We model the residuals Aijct as

Aijct = µj + ϵijct

We then construct instructor-period averages Ajt =
1

Njt

∑
c

∑
iAijct, where Njt is the number

of students in instructor j’s courses in period t. Also, denote Ajt as the vector collecting
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observations Aijct of this set of Njt students. Assuming that µj

∼
iidN(0, σ2

µ) and µj

∼
iidN(0, σ2

ϵ ),

Gilraine et al. (2020) show that the likelihood of the residuals takes the form

L(Aijct|σ2
µ, σ

2
ϵ ) =

∏
j

∏
t

L1(Ajt|σ2
µ)L2(Ajt|σ2

µ, σ
2
ϵ )

L1(Ajt|σ2
µ) =

1√
Njt

(
1√
2πσ2

ϵ

)Njt−1

exp

(
−
∑
c

∑
i

(Aijct − Ajt)
2/2σ2

ϵ

)

L2(Ajt|σ2
µ, σ

2
ϵ ) =

1√
2π(σ2

µ + σ2
ϵ/Njt)

exp

(
−

A2
jt

2(σ2
µ + σ2

ϵ/Njt)

)

We then maximize this likelihood numerically to obtain σ̂2
µ and σ̂2

ϵ .

C.2 Empirical bayes estimation

Because the variance of individual error σ2
ϵ is much larger than the variance of value-added

σ2
µ, simple fixed effects estimates of µj will be affected by classical measure. Then, if we

regress outcomes on value-added, such as in our forecast bias tests, coefficient estimates on

value-added will be biased. To address this issue, we estimate value-added shrunk using

empirical Bayes, following Kane and Staiger (2008); Chetty et al. (2014a); Bau and Das

(2020), and most other modern value-added studies.

To estimate empirical Bayes estimates of value-added, we begin by residualizing the

outcomes A∗
ijct as in Equation 3 and obtain residuals Aijct. We then estimate σ2

µ and σ2
ϵ as

discussed in Appendix C.1. With these estimates in hand, we construct average residuals

Ajt =
1

Njt

∑
c

∑
iAijct, where Njt is the number of students taught by instructor j in period

t in a given subject.

We then construct weighted sums of these residuals, using weights wjt:

mj =
∑
t

wjtAjt

wjt =
hjt∑
t hjt

hjt =
1

σ̂2
µ +

σ̂2
ϵ

Njt

These weights up-weight the contributions of periods where instructor j teaches more stu-

dents since the averages Ajt are more precise estimates of value-added in these periods, and
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down-weight contributions of periods with fewer students.

Finally, we construct empirical Bayes estimates by multiplying mj by the reliability for

instructor j’s estimate:

µ̂j = mj

(
σ̂2
µ

σ̂2
µ + (

∑
t hjt)

−1

)
.

The reliability shrinks value-added estimates toward zero in two ways. First, it attenuates

estimates more for instructors who taught fewer students total, since their estimates are

less reliable than instructors who taught more students. Second, it attenuates all value-

added estimates more in subjects where σ̂2
µ is smaller relative to σ̂2

ϵ , since in these subjects,

measurement error is more of a problem. We use this reliability factor in constructing our

feasible policy gains in Section 7.3.

C.3 Jackknife empirical bayes estimates

When regressing an outcome on estimates of value-added, such as in the forecast bias test in

Equation 6, there may be spurious correlations if data from periods found on the left hand

side of the equation are used to estimate value-added on the right hand side of the equation.

To address this issue, we construct jackknife empirical Bayes value-added estimates for these

types of forecast bias tests Chetty et al. (2014a).

To implement jackknife empirical Bayes value-added, we first residualize outcomes A∗
ijct

and estimate variances as normal. Then, in the second step, we construct the weighted sums

mj and weights wjt and hjt leaving out period t, or both period t and t−2, if the forecast bias

test regresses changes in outcomes on changes in value-added. This results in time-varying

weighted sums mjt, which we multiply by the updated shrinkage term, using the new weights

hjt that leave out t. Finally, we obtain jackknife empirical Bayes estimates µ̂jt.

Though these estimates vary across time, our assumption that µj is fixed across time

remains unchanged. The time-varying nature of µ̂jt is merely a statistical artifact of the

estimation procedure.

C.4 Hierarchical clustering

Hierarchical clustering is an unsupervised method for grouping data. Applying this method

to data requires three choices: a measure of divergence between observations, a method for

measuring divergence between a groups, and a level of divergence to define the final cluster.

To group students together based on their course histories, we apply hierarchical clustering
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to Hict
50, which we define as the vector of indicators for each course offered at an institution,

where an entry is 1 if a student has taken the course corresponding to the entry during a

period t′ ≤ t and a zero otherwise. The methods described are also used to group students

at Purdue based on their top six course preferences, similarly encoded in the vector Pict, but

without loss of generality, we will focus on histories.

To measure divergence between observations, we use the Jaccard index. Given a set

of course histories {Hict}Nct
i=1 for students in course c in period t, we calculate divergence

between the histories Hict and Hjct, with i ̸= j:

g(Hict,Hjct) =
H′

ictHjct

H′
ictHjct + (I −Hict)′Hjct +H′

ict(I −Hjct)

where I is a vector of ones. Intuitively, this measures the fraction of matches between student

i and j’s course histories relative to the total number of courses either student has taken.

We use this measure because these vectors are very sparse.

To summarize distance between groups, we use the average linkage. This method mea-

sures the divergence between groups as the average divergence between all pairs of observa-

tions in each group. Let H1
ct and H2

ct be histories of groups of students in course c during

period t. The average linkage between these groups is

G(H1
ct,H

2
ct) =

1

N1N2

N1∑
i=1

N2∑
j=2

g(Hict,Hjct)

With an average linkage in hand, hierarchical clustering constructs a cluster analysis with

the following algorithm:

1. Treat each observation j as a singleton group

2. Calculate the average linkage G(Ha
ct,H

b
ct) between all groups a ̸= b

3. Join the two groups with the smallest average linkage for a new set of groups

4. Repeat steps 2 and 3 until all observations are in a singleton group

This produces a large set of nested possible clusters. Finally, we choose a level of di-

vergence to define which cluster to use. To choose a level of divergence, we calculate the

mean of the levels of divergence at which each observation was first grouped and use the

corresponding cluster analysis.

50We use the bold font Hict to refer to the full vector of past and current courses for student i in course
c during period t, while Hict refers to the course history similarity group fixed effect
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We chose to use the mean divergence first, to tie our hands and avoid cherry-picking, and

second, to balance the trade-off between between group size and within-group similarity.

Choosing a very low divergence level to form clusters results in many students being left

in singleton groups, with grouped students being very similar. Those students in singleton

groups are not used for estimation in the main specification. On the other hand, choosing a

high divergence level puts many students into one large group. This means that students in

the large group may actually be quite dissimilar, which does not solve the selection problem.

Table A-7 shows summary statistics on the course history similarity groups in Texas.

The mean number of students per course was about 11 students, with 5 students per group

on average. Most of the groups of students were groups of two. However, more than half of

students were in groups of at least 15.

D Robustness Tests

D.1 Course-level teaching roster changes forecast bias test

In the teaching roster changes forecast bias, we used changes in value-added to predict

changes in student outcomes within a subject-course level cell. An alternative is to conduct

this same test, but using course averages instead. Figure A-4 presents results from course

teaching roster changes forecast bias tests for all Texas universities in our sample. Similar

to the course level forecast bias tests shown previously, using course histories to control for

unobservable student selection greatly reduces bias, especially relative to estimates that use

only lagged achievement to control for selection. In fact, estimates with lagged achievements

only may be more forecast biased than suggested by the subject-course level tests.

D.2 Including ungrouped students

After applying hierarchical clustering to students’ course histories, roughly 30% of student-

course-period observations were left in singleton groups. We call these students “ungrouped”.

Our main results were estimated by excluding ungrouped students. Here, we include un-

grouped students in the estimation procedure by putting all such students in the same course

and period into a course history similarity group. Effectively, ungrouped students become the

reference group in each course-period for the history group fixed effects in the residualization

in Equation 3.

Figure A-5 shows forecast bias tests from all Texas institutions for value-added estimates

to next-semester GPA and log earnings six years post-entry that include ungrouped stu-

dents. Similar to estimates using only grouped students, estimates with ungrouped students
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Figure A-4. Course teaching roster changes forecast bias test for Texas universities

Notes: The teaching roster changes forecast bias test leverages year-to-year variation

in teaching assignments to assess whether changes in residual student achievement

are predicted by shifts in instructor value-added, with estimates regressing students’

residualized next-semester GPA on changes in average jackknifed value-added. Bias co-

efficients estimated separately for each Texas university, controlling for period-subject-

course level fixed effects. Observations are at the course-period level. Standard errors

are clustered at the period-subject level. An estimate closer to 1 indicates better con-

trols for selection.
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substantially reduce forecast bias relative to estimates that use only lagged achievement to

control for student selection.

Table A-8 shows average variances across Texas instituions of value-added estimates

that include ungrouped students. The variance of value-added to both GPA and earnings

are very close to the variances estimated using only grouped students, indicating that our

sample restriction does not change the interpretation of our results meaningfully.

D.3 Change in enrollment

We test this assumption with a robustness check that regresses changes in student enrollment

on changes in value-added, and find that changes in value-added within a course do not

predict changes in student achievement. The full results of this test are in the appendix.

The forecast bias test described in Equation 6 relies on the assumption that E[ξslt|∆Mslt] =

0, or that changes in student unobservables are independent of changes in value-added within

a subject-level. While innocuous in K-12, this assumption could be more concerning in

post-secondary education where students are able to choose when to take a course from an

instructor. For example, if students could perfectly predict teaching rosters and waited to

take an intermediate-level economics course from a particular instructor, this test would

be biased. Therefore, we rely on the assumption that most changes in teaching rosters are

unexpected by students, or that students do not react to these changes.

We examine evidence for this assumption holding by investigating how well changes in

value-added predict changes in enrollment within a subject-level. Let ∆Mslt be the change

in average value-added within a subject and level from period t − 2 to period t, and ∆Nslt

be the change in average enrollment for the same subject-level and period. Our robustness

test regresses changes in average enrollment on changes in average value-added:

∆Nslt = δ∆Mslt + ξ′slt

An estimate of δ = 0 would indicate that students are not systematically enrolling in subjects

and levels where value-added is higher or lower. If students do wait to enroll in courses to

have instructors that have higher (or lower) value-added, this test would have an estimate

of δ > 0 (δ < 0).

Figure A-6 presents these results for Texas. The coefficients indicate that at nearly all

universities, changes in instructor value-added do not predict changes in enrollment. Nearly

all estimates have confidence intervals containing zero, and most estimates are very near

zero.

The results of this test find no evidence that students increase or decrease their enroll-
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Figure A-5. Teaching roster changes forecast bias test for Texas universities with un-
grouped students

Notes: The teaching roster changes forecast bias test leverages year-to-year variation

in teaching assignments to assess whether changes in residual student achievement

are predicted by shifts in instructor value-added, with estimates regressing students’

residualized next-semester GPA on changes in average jackknifed value-added. Bias co-

efficients estimated separately for each Texas university, controlling for period-subject

fixed effects. Observations are at the subject-course level-period level. Standard errors

are clustered at the period-subject level. An estimate closer to 1 indicates better con-

trols for selection.
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Figure A-6. Teaching roster changes enrollment test

Notes: The teaching roster changes enrollment to assess whether changes in student

enrollment are predicted by shifts in instructor value-added, with estimates regressing

changes in enrollment on changes in average jackknifed value-added. Bias coefficients

estimated separately for each Texas university, controlling for period-subject fixed ef-

fects. Observations are at the subject-course level-period level. Standard errors are

clustered at the period-subject level. An estimate closer to 0 indicates that students

do not systematically respond to changes in value-added.

ment in response to changes in value-added. This suggests that students do not time their

enrollment to be with high- or low value-added instructors, suggesting that the teaching

roster changes forecast bias tests are valid.

E Student Evaluation Questions

Table A-9 shows the categorization of questions from Texas tech student evaluations. Stu-

dents gave scores from 1 to 5 in response to each question, where 5 indicated that the

statement was very true for the instructor. We then took averages across these responses to

form evaluation scores. Note that we collected two additional categories: the “soft skills”

score, that encapsulates questions concerning the instructors kindness and availability, and
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the “fair course” score, which incorporates questions concerning the overall fairness of the

course. We excluded these categories from the main regressions and policy evaluation because

they were introduced halfway through our panel. Table A-10 shows bivariate regressions of

value-added and leniency on all five evaluation scores. Again, value-added to GPA is signif-

icantly correlated with both of these evaluation scores and value-added to earnings is not.

For these categories, leniency is even more highly correlated than the overall and teaching

score categories.
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Table A-3. Heterogeneity in value-added across in-
structors

VA to GPA VA to Earnings
(1) (2)

Full Professor -0.550*** 0.654**
(0.116) (0.287)

Associate Professor -0.532*** 0.688**
(0.110) (0.289)

Assistant Professor -0.500*** 0.604**
(0.111) (0.275)

Non-Tenure Track -0.493*** 0.622**
(0.100) (0.257)

Asian -0.033** -0.030**
(0.015) (0.013)

Black -0.050*** -0.023
(0.013) (0.015)

Hispanic 0.016 0.000
(0.016) (0.013)

Female -0.006 0.010
(0.015) (0.011)

International -0.055*** -0.002
(0.013) (0.013)

Log Average Salary 0.047*** -0.052*
(0.011) (0.026)

Age 0.002 0.011
(0.007) (0.006)

Fraction Upper Level -0.070** 0.028
(0.030) (0.022)

N 68,903 62,359
R2 0.016 0.009

Notes: Estimates are from separate regressions of value-added
on instructor characteristics. Regressions control for subject and
institution, with observations at the instructor level. Standard
errors are clustered at the institution level. Value-added values are
standardized, so the interpretation of the coefficient is standard
deviation difference in average value-added for a given outcome
for instructors having a given characteristic relative to the base
category.
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Table A-4. History cluster examples

Panel A: Organic Chemist Type Medical School Type
Chemistry (1) (2)

Commonly
Taken Courses

BMEN101 CHEM120
BMEN253 HLTH210
CHEM119 HLTH236
ENGR102 HLTH240
MATH151 PSYC107
VTPP434 SOCI205

Last Semester GPA 3.33 3.67
Admissions Test Percentile 86 59
Selection Test p-Value 0.04

Panel B: Intermediate Micro Business Type Agricultural Econ Type

Commonly
Taken Courses

ACCT229 AGEC117
ACCT230 AGEC217
BUSN101 AGEC314
ECON202 AGEC340
ISTM210 POLS207

Last Semester GPA 3.30 3.32
Admissions Test Percentile 76 62
Selection Test p-Value 0.06

Panel C: Calculus 3 Computer Science Type Engineering Type

Commonly
Taken Courses

CS18000 ENGR16100
CS18200 ENGR16200
CS19100 HONR19901
CS19300 HONR19902
MA16200 MA16200

Last Semester GPA 3.57 3.47
SAT Score 760 751
Selection Test p-Value 0.02

Notes: This table compares popular courses and summary statistics for selected course history
similarity groups in Organic Chemistry (Panel A) and Intermediate Microeconomics (Panel B) at
Texas A&M and Multivariable Calculus at Purdue (Panel C). The selection test p-value comes
from a Pearson’s χ2 test of independence. For Panel A and B that come from Texas A&M, we
show percentile of entrance exam score. Panel C shows average SAT score for the Purdue students.
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Table A-5. Linear retention of contingent in-
structors

Retained

No Controls VA Controls
(1) (2)

Instructor Score 0.041*** 0.042***
(0.008) (0.009)

N 4,213 3,902

Notes: Estimates are from regressions of a retention
indicator of contingent instructor scores from student
evaluations with subject and year fixed effects. Column
2 controls for vigintiles of value-added to next-semester
GPA and earnings. Observations are at the instructor-
subject-year level. Standard errors are clustered at the
subject level.
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Table A-6. Non-linear retention of contingent instructors

Retained

No Controls VA Controls
(1) (2)

Instructor Score Vigintile 1 -0.289*** -0.262***
(0.032) (0.038)

Instructor Score Vigintile 2 -0.175*** -0.136**
(0.036) (0.041)

Instructor Score Vigintile 3 -0.157*** -0.121**
(0.038) (0.049)

Instructor Score Vigintile 4 -0.176*** -0.164***
(0.037) (0.045)

Instructor Score Vigintile 5 -0.170*** -0.152***
(0.037) (0.044)

Instructor Score Vigintile 6 -0.173*** -0.156**
(0.039) (0.049)

Instructor Score Vigintile 7 -0.143*** -0.124**
(0.030) (0.037)

Instructor Score Vigintile 8 -0.209*** -0.202***
(0.038) (0.044)

Instructor Score Vigintile 9 -0.157*** -0.146**
(0.038) (0.044)

Instructor Score Vigintile 10 -0.169*** -0.137**
(0.032) (0.041)

Instructor Score Vigintile 11 -0.144*** -0.134***
(0.028) (0.031)

Instructor Score Vigintile 12 -0.148*** -0.142***
(0.028) (0.035)

Instructor Score Vigintile 13 -0.158*** -0.142***
(0.027) (0.033)

Instructor Score Vigintile 14 -0.118*** -0.094**
(0.026) (0.033)

Instructor Score Vigintile 15 -0.137*** -0.121***
(0.026) (0.033)

Instructor Score Vigintile 16 -0.157*** -0.144***
(0.028) (0.036)

Instructor Score Vigintile 17 -0.126*** -0.111***
(0.025) (0.031)

Instructor Score Vigintile 18 -0.127*** -0.107**
(0.028) (0.035)

Instructor Score Vigintile 19 -0.104** -0.097**
(0.036) (0.042)

N 4,213 3,902

Notes: These regressions are similar to those in Table A-5, but use vigintiles of instructor scores
from student evaluations. Estimates are relative to the top vigintile of instructor scores. Column 2
controls for vigintiles of value-added to GPA and earnings.
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Table A-7. Course history similarity group
statistics

Mean Median
(1) (2)

Groups per Course 10.892 4
Students per Group 5.193 2
Fraction Ungrouped 0.299 .
Fraction in Groups of ≥ 15 0.505 .

Notes: This table shows statistics on the course history
similarity groups for our Texas sample. The units of
observation for rows 1 and 2 were course-periods. The
units of observation for rows 3 and 4 were student-course-
periods.

Table A-8. Variances of value-added distri-
butions with ungrouped students

Outcome Measure σ2
µ

Next Semester GPA 0.014
Log Earnings Six Years Post Entry 0.023

Notes: Variance of the value-added distributions
were estimated within subject and institution, using
maximum likelihood estimation, following Gilraine
et al. (2020). This table then shows student-course-
period weighted averages of these variances across
subject and institution.
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Table A-9. Evaluation Question Categorization

Category Question Text

Instructor Score Overall this instructor was effective
Overall, the instructor was an effective teacher

Teaching Score The course objectives were specified and followed by the instructor
The instructor demonstrated knowledge of the subject
The instructor stimulated student learning
The instructor presented the information clearly
The instructor emphasized the major points and concepts

Course Score Overall this course was a valuable learning experience
Overall, this course was a valuable learning experience

Soft Skills Score The instructor treated all students fairly
The instructor treated all students with respect
The instructor welcomed and encouraged questions and comments
The instructor was available for consultation during office hours
or by appointment

Fair Course Score Expectations were clearly stated either verbally or in the syllabus
The testing and evaluation procedures were fair
The workload was appropriate for the hours of credit

Notes: Categorization of student evaluation questions from Texas Tech. Some wordings of questions
changed slightly during our panel of evaluations.
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Table A-10. Comparison of instructor value-added to
student evaluations

Value-added
GPA Earnings Leniency
(1) (2) (3)

A: Soft Skills Score 0.091** 0.000 0.235***
(0.034) (0.023) (0.033)

N 1,841 1,839 2,052

B: Fair Course Score 0.125*** 0.003 0.260***
(0.031) (0.021) (0.037)

N 1,841 1,839 2,052

Notes: Estimates are from separate bivariate regressions of instruc-
tor and course quality measures, based on student evaluations, on
instructor value-added or leniency. Evaluations Texas Tech. The
specific questions related to instructor, teaching, and course quality
are detailed in Appendix E. Leniency is defined as the difference be-
tween an instructor’s average grades and the average grades given
by other instructors teaching the same subject at the same level.
All student evaluation scores, value-added, and leniency measures
are normalized. Regressions control for institution, with observa-
tions at the instructor level. Standard errors are clustered at the
subject level.

67


	Introduction
	Statistical Framework and Estimation 
	Data and Setting 
	Purdue student panel
	Texas student panel

	Lagged Achievement is Insufficient to Control for Bias from Students' Selection to Instructors 
	Value-added estimation using established methods
	Forecast bias in value-added estimates 

	Augmenting Value-added with Course Histories 
	Estimating value-added with course histories
	Common sense checks of course history groups
	Forecast bias estimates for course history value-added at Purdue
	Forecast bias estimates for course history value-added in Texas

	Impacts and Characteristics of High Value-added Instructors 
	Instructors impact students' future outcomes
	Characteristics of high-quality instructors
	Correlation between value-added and student evaluations 

	Policy Implications 
	Student evaluations and retention of contingent instructors
	Full deselection using value-added
	Partial de-selection using value-added

	Conclusion 
	Appendix Tables and Figures
	Purdue's Course Registration Algorithm
	Estimation Details
	Estimating variances of instructor value-added and individual error
	Empirical bayes estimation
	Jackknife empirical bayes estimates
	Hierarchical clustering

	Robustness Tests
	Course-level teaching roster changes forecast bias test
	Including ungrouped students
	Change in enrollment

	Student Evaluation Questions

