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Abstract

Estimating post-secondary instructors’ value-added is challenging because college stu-
dents select their courses and instructors. In the absence of value-added measures,
universities use subjective student evaluations to make personnel decisions. In this
paper, we develop a method to estimate instructor value-added at any university. The
method groups students who have previously taken similar courses and estimates value-
added based on differences in outcomes for students in the same group and same course
who have different instructors. Using a unique policy at a large public university in
Indiana, we show that our method account for selection just as well as methods that
exploit conditional random assignment of students to courses. We next show that our
method reduces forecast bias in a wider variety of institutions using data from nearly all
public universities in Texas. We find that individual instructors matter for students’
future grades and post-college earnings in many subjects and courses. On average,
moving to a 1 standard deviation better instructor would increase a student’s next
semester GPA by 0.13 points, and earnings six years after college entry by 17%. Strik-
ingly, value-added is only weakly correlated with student evaluations. An instructor
retention policy based on value-added would result in 2.7% higher earnings for students
attending Texas universities.
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1 Introduction

Post-secondary instructors play an important role in preparing college students for the labor

market. However, the extent to which instructors vary in their ability to affect students’

outcomes is not well understood due to the lack of observational methods for estimating

instructor impacts quantitatively. Additionally, the absence of quantitative measures of

instructor quality leads universities to rely on subjective student evaluations when making

important personnel decisions, such as hiring, tenure, promotion, and retention. Research

indicates that these evaluations can distort teaching incentives by encouraging grade inflation

(Nelson and Lynch, 1984; Eiszler, 2002) and may also reflect students’ biases (Chisadza et al.,

2019).

In contrast, teacher impacts in K-12 are widely studied due to the prevalence of ob-

servational methods for estimating teacher quality quantitatively with value-added models.

However, estimating value-added in higher education is complicated by substantial identifi-

cation challenges. Except when applied in an experimental or randomization-based setting,

value-added estimation requires that selection be on observables — i.e. the factors influenc-

ing student selection across instructors can be observed and controlled for. In K-12, it is

often sufficient to control for lagged student achievement, measured by a previous year’s stan-

dardized test score, to account for selection (Kane and Staiger, 2008; Chetty et al., 2014a).

In most higher education settings, however, researchers lack a similar standardized measure

of student ability to summarize selection. Furthermore, since college students are free to

choose their course schedules, unobservable characteristics likely guide students’ choices of

instructors in ways that cannot be addressed by controlling for achievement alone. When

students’ unobservable characteristics are correlated with both their choice of instructor and

future outcomes, like subsequent course selection or career path, conventional value-added

estimates will be biased.

This paper proposes a general method for estimating instructor value-added at many

universities by augmenting the value-added model with students’ “course histories.” Intu-

itively, some students who pursue the same major have different unobserved “types” that

steer them to different instructors. Our approach follows this intuition, and overcomes bias

from student selection in value-added estimation by comparing students who have previously

taken similar classes but, for some current class of interest, have different instructors. Im-

portantly, although the course history data our method relies on are rich, they come from

transcripts, which are necessarily maintained by every post-secondary institution. Estimates

of value-added that control for course histories show that instructors differ in their ability

to impact their students’ future grades and earnings.
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To see the intuition of augmenting value-added with course histories, consider two stu-

dents taking Organic Chemistry with different types: one may take it as a pre-requisite for

medical school, while another may take it on the path towards becoming a chemist. Informed

by their intentions, students who fit these archetypes likely select different instructors because

instructors may differentially help them obtain what they want to get out of the course. We

propose that students reveal their types through their past course choices. Thus, we might

distinguish “medical school types,” who have previously taken Human Anatomy and Biology,

from “chemist types,” who have previously taken Calculus. Our method creates groups of

students with similar unobservable types using hierarchical clustering based on their course

histories. By only using comparisons within these groups to identify value-added, we are able

to control for otherwise unobservable differences that might bias conventional value-added

estimates.1

In the spirit of LaLonde (1986), we begin by comparing value-added with course histories

to a conditionally random benchmark, using data from Purdue University. At Purdue,

we leverage an unusual policy that assigned students to courses randomly, conditional on

submitted preferences.2 This policy allows us to estimate value-added to next-semester

GPA under conditional randomization for comparison with our course history value-added

estimates, which use methods that could be applied at any university. We find that course

history and conditionally random value-added generate very similar rankings of instructors,

with a correlation between the two methods of within-subject instructor rankings of 0.83.

We also estimate value-added using lagged achievement to control for selection to document

that course histories or a policy that randomizes students into classes are indeed necessary

for identification. Similar to value-added in a K-12 setting, the lagged achievement value-

added estimates control for observable measures of lagged student achievement, such as past

GPAs and entrance exam scores, and fixed student and classmate characteristics.

Using value-added estimates from Purdue, we find that controlling for course histories re-

duces forecast bias substantially, relative to the standard lagged achievement model. Forecast

bias often occurs when unobservably higher-ability students select higher-quality teachers.

In such a case, value-added does not predict student outcomes one-for-one out of sample, and

a forecast bias test will yield coefficient estimates far from 1. We assess forecast bias using

two tests. The first, which we call the conditional random assignment policy test, uses value-

1Dale and Krueger (2002) provide a similar motivation for identifying the return to different universities
by comparing outcomes of students who apply to the same set of universities but differ in the institution
they ultimately attend. We extend their clever intuition to a setting where restricting comparisons to be
between students with similar course histories makes instructor selection more plausibly random.

2Most prior value-added estimates for instructors in higher education use similar policies that randomize
student enrollment.
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added estimated with data from before Purdue’s policy to predict student outcomes during

the later period, when the policy was in place. The second, which we call the teaching roster

changes test, is identified by year-to-year changes in teaching rosters that are unexpected

by students, following Chetty et al. (2014a). When these bias tests are applied to lagged

achievement value-added estimates — which include only the conventional controls used in

K-12 value-added estimation— the estimates do not predict student outcomes out of sample,

with bias test coefficients between 0.25 and 0.32. Therefore, these controls are insufficient

to control for student selection. In contrast, the bias tests indicate that our value-added es-

timates with course histories predict student achievement out-of-sample very well, with bias

test coefficients between 0.70 and 0.90. We also find that value-added with course history

controls for selection approximately as well as estimates that use the conditional random

assignment policy.

We show that our course histories value-added method is generalizable to other settings

by estimating value-added at nearly all public universities in Texas. Texas is an ideal setting

to test portability because of the size and variety of its university system. In Texas, we

estimate value-added at 33 universities which enroll nearly 10% of all four-year university

students in the US. Furthermore, these universities span a large range of university types,

from large flagship R1 institutions to smaller regional public schools.

Additionally, our data in Texas allows us to estimate value-added to a concrete outcome:

post-college earnings. In Texas, we can link transcript data to earnings, and estimate value-

added to both next-semester GPA and log earnings after college. Though there are many

possible outcomes of interest for value-added estimation, next-semester GPA and earnings

are natural starting points in higher education because they have different strengths and

weaknesses. Semester GPA is a frequently observed measure of student ability that is of

interest to both students and universities, since grades impact students’ graduation rates,

eligibility for certain majors, and graduate school prospects. However, GPA is internal to the

university and is influenced by differing grading patterns across time, subject, and instructor.

At the other end of the spectrum, earnings have a clearer connection to student welfare, are

determined by the market, and are comparable across subjects and universities, but are not

immediately observable for students. Many other intermediate outcomes could fit between

grades and earnings.

In Texas, we find that course histories control for unobservable student selection at uni-

versities without randomization-based enrollment policies. We apply the teaching roster

changes forecast bias test to estimates of value-added to grades and earnings using course

histories to control for selection. For both value-added to grades and earnings, the value-

added estimates predict student achievement very well: 75% of forecast bias coefficients for
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value-added with course history controls are between 0.75 and 1.25, indicating that course

histories address selection in this more general setting. Value-added estimates that use the

lagged achievement model fail to control for selection, with the majority of forecast bias

coefficients falling below 0.6.

Our estimates of value-added using course histories document that individual instructors

differ in their ability to affect both students’ grades and students’ earnings. An instructor

with 1 standard deviation higher value-added increases their students’ next-semester GPA

by 0.13 grade points and earnings six years post-college entry by 17%. Additionally, we find

heterogeneity in the variance of value-added by subject and institution.

Similar to the K-12 literature, we find that instructor characteristics are not strong

predictors of value-added. In a regression of value-added on a rich set of observables, the

R2 is less than 0.02 for value-added to both outcomes. This suggests that value-added

is new information to the institution not found in CVs or resumes. Nevertheless, a few

characteristics are statistically significant predictors of value-added. For example, associate

professors and contingent instructors have significantly higher value-added to earnings than

full professors and assistant professors.

Finally, to assess whether value-added measures could be leveraged by universities to

improve student outcomes, we estimate the earnings gains possible from a counterfactual in-

structor retention policy that uses value-added rather than student evaluations. To conduct

this exercise, we scraped all instructor evaluations from one of the schools in the Texas sam-

ple: Texas Tech. Descriptively, we find that student evaluation scores are mildly positively

correlated with value-added to GPA but are uncorrelated with value-added to earnings. In-

terestingly, a stronger correlate of student evaluations is not value-added, but instructor

grading leniency. The correlation between evaluation scores and the average grades an in-

structor assigns is nearly twice the magnitude of the correlation with value-added to GPA.

Given the weak or non-correlation between evaluations and value-added, there are likely

potential gains to students’ grades or earnings from a policy that leverages value-added in

instructor retention.

We find that counterfactual policies using value-added rather than student evaluations

to make retention decisions for contingent instructors could increase student earnings. We

motivate our policies by documenting that at Texas Tech, the likelihood that a contingent

instructor is retained is roughly linear for most student evaluations but drops discontinu-

ously for instructors who receive evaluations in the bottom vigintile of evaluations. This

relationship implies that the institution does indeed use student evaluations in retention

decisions for contingent instructors. We simulate the results of a mass deselection of the

bottom 5% policy, following Hanushek (2009), and find large gains for students. We then
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conduct a more realistic exercise, which uses the relationship between evaluations and re-

tention to motivate a policy that uses value-added instead. We estimate the earnings gains

under the realistic counterfactual policy to be in the range of 2.7% of quarterly earnings for

the average student.

This project makes three primary contributions. First, we develop and validate a novel

approach for estimating instructor value-added in higher education, overcoming selection

issues that previously limited research to a few institutions with unique enrollment poli-

cies. The spirit of this approach may be relevant in value-added settings, both inside and

outside of education, where agents select on some unobservable characteristic that may be

correlated with some other observable behavior. Second, we extend our method to a broad

sample of institutions and subjects, showing that it addresses selection in a more nationally

representative context. Third, we provide new evidence on the importance of instructors,

demonstrating significant variation in value-added impacts on both grades and earnings.

This project contributes to several strands of literature. A small but growing body of

research estimates instructor value-added in higher education (Hoffmann and Oreopoulos,

2009; Carrell and West, 2010; Figlio et al., 2015; Brodaty and Gurgand, 2016; DeVlieger

et al., 2018). These studies typically exploit unique institutional features, such as the ran-

dom assignment of students to course sections or the use of standardized evaluations, to

estimate instructor value-added for a limited set of courses. For example, Carrell and West

(2010) leverage a unique policy of random assignment of students to core courses at the

United States Air Force Academy to estimate value-added based on standardized final exam

scores. A more recent study by DeVlieger et al. (2018) examines the value-added of algebra

instructors at the University of Phoenix, a large for-profit online university. Both studies

document large variation in instructors’ impacts on student outcomes.

Our primary methodological contribution is to develop a method for estimating value-

added that can control for selection at the vast majority of institutions which do not use

randomization or other restrictive policies to assign students to courses3. An additional

contribution is that we estimate value-added for instructors across a broader range of courses

than previous studies and extend the analysis to include value-added to earnings. Our

results align with the existing literature in our finding of large variation in instructor value-

added to student achievement. We additionally extend analysis by Carrell and West (2010)

and DeVlieger et al. (2018) by comparing instructor value-added to student evaluations of

instructor quality. In contrast to the finding in Carrell and West (2010) that instructors

who raise student scores in their own courses tend to receive high evaluation scores but have

3We do make use of a policy at Purdue, but only to validate our generalizible method and establish a
ground truth for value-added.
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low value-added to student grades in subsequent courses, we find that student evaluations

are positively correlated with value-added to next-semester GPA but are uncorrelated with

value-added to earnings.

We also build on a much larger literature that measures instructor value-added to test

scores in K-12 education. This literature uses value-added methods to demonstrate that

teachers in primary and secondary schools have causal impacts on student outcomes across

a variety of settings.4 Our paper extends these methods to the higher education context and

finds that university instructors similarly affect student outcomes. Our work builds most

directly on three studies. Kane and Staiger (2008) estimate value-added in the Los Angeles

Unified School District, using a randomized student-teacher assignment policy to validate

estimates and test for bias. We apply a similar strategy, using a randomized sample to

validate estimates from non-randomized data. Chetty et al. (2014a) develop forecast bias

tests in New York schools, which we adapt for quasi-experimental tests based on semester-to-

semester changes in teaching rosters. Chetty et al. (2014b) extend this work to estimate the

effects of teacher value-added to test scores on long-term outcomes like college attendance

and earnings. We similarly estimate value-added to post-college earnings, but we differ by

estimating the impact of instructors on earnings directly. Our estimates of value-added to

earnings are the first of their kind in both the K-12 and the higher education literature.

The rest of the paper proceeds as follows. Section 2 describes the foundational framework

for value-added estimation. Section 3 describes the two panel data sources used for this

project. Section 4 describes and documents the limitations of conventional value-added

models in the general higher education setting. Section 5 describes and validates our new

“course histories” approach. Section 6 uses our value-added estimates to document variation

in value-added across higher education instructors. Section 7 assesses the potential for

earnings increases from instructor retention policies guided by value-added, rather than

student evaluations. Section 8 concludes.

2 Statistical Framework and Estimation

In this section, we describe how we estimate value-added and apply empirical Bayes shrinkage

to account for measurement error. Our model and estimation framework both follow the

value-added literature.

4For example, Boardman and Murnane (1979); Hanushek (1979); Rockoff (2004); Jacob and Lefgren
(2008); Rothstein (2010); Chetty et al. (2014b); Angrist et al. (2017); Macartney et al. (2018); Altonji and
Mansfield (2018); Rose et al. (2022). We also add to a growing literature that estimates value-added to non-
test outcomes, such as student behavior (Jackson, 2018; Petek and Pope, 2023) and academic performance
in the future (Gilraine and Pope, 2021).
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Consider a generic achievement measure A∗.5 Following the value-added literature, we

express the achievement A∗
ijsct of student i in course c of subject s during academic period t

in instructor j’s classroom as

A∗
ijsct = Xitβ + Cjsctγ + ρc + λt + νijsct (1)

νijsct = µjs + ϵijsct (2)

where Xit captures student i’s background characteristics, Cjsct are characteristics of other

students taking class c with instructor j,6 ρc is a course fixed effect, λt is a period fixed effect

and a composite error term νijsct The composite error term is a combination of individual

error ϵijct and µjs, which is instructor j’s value-added to Aijsct. Note that, in practice, all

estimation takes place within subject because there are few instructors who teach in more

than one subject. Thus, we drop the s subscript for the remainder of the section.

Our estimands of interest are µj, instructor j’s value-added, and the variance of the

distribution of value-added, σ2
µ, which describes the impact of moving to a higher-quality

instructor. In particular, the standard deviation of the value-added distribution σµ is the

average impact of having a one s.d. higher VA instructor.

We make two simplifying assumptions for our estimation. First, we assume that value-

added is fixed across time t and across course c.7 Second, we assume that both µj and

ϵijct are distributed normally, allowing us to use maximum likelihood estimation (MLE) to

estimate variances for both distributions, following Gilraine et al. (2020).8

To estimate µj, we begin by residualizing A∗
ijsct on background and classroom character-

istics:

Aijct = A∗
ijct −

(
Xitβ̂ + Cjctγ̂ + ρ̂c + λ̂t

)
(3)

where the estimated coefficients and fixed effects come from the regression in equation (1)

5In elementary and secondary education, the conventional achievement measure is performance on a
standardized test. Lacking standardized tests in higher education, we often use the students’ next-semester
GPA as a comparable academic achievement measure. To measure student outcomes more concretely, we
also use student log earnings six years post-college entry.

6Specifically, we control for average lagged GPA of all students who take instructor j’s sections of course c
in period t. We define these characteristics at the instructor-course-period level, such that, for an instructor
who teaches multiple sections of c in semester t, we pool across all of their sections.

7By defining value-added at the institution-by-subject level, value-added may vary for the very small set
of instructors who are attached to multiple subjects or institutions.

8See Appendix C.1 for more details on this method.
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with Equation (2) substituting for νijct. The substitution and subsequent inclusion of µj in

the residualizing step assures that we estimate these coefficients using only within-instructor

variation and not across-instructor variation (Chetty et al., 2014a). Using the residuals Aijct,

we construct three different measures of value-added, which we use for different tests because

of their statistical properties.

Our main measure of value-added used in all bias tests is constructed using empirical

Bayes methods. Applying empirical Bayes is common in the value-added literature, since

value-added estimates are subject to classical measurement error from large variances in

the student error term, ϵijct. We expect ϵijct to vary widely because exams, grades, and

other outcomes measure students’ true achievement noisily. Thus, empirical Bayes shrinks

artificially noisy fixed effects estimates of µj towards a normal distribution with mean zero.

Intuitively, empirical Bayes down-weights the contribution of periods where an instructor

has few students, and shrinks estimates for all instructors when the estimated variance

of the value-added distribution is smaller relative to the variance of the individual error

distribution.9

In some applications, such as the teaching roster changes bias test introduced in Section

4.2, we regress student characteristics on the estimated value-added of their instructors. If

these same students’ data was used to estimate that value-added, there would mechanically

be spurious correlation between estimated value-added and student outcomes. In order

to avoid these spurious correlations, we construct jackknifed versions of empirical Bayes

value-added estimates. Jackknife value-added estimates are computed by excluding the

current period’s data to predict value-added in the current period. By relying on all periods

other than the current period, jackknife value-added estimates eliminate this mechanical

correlation.10

When value-added is on the left hand side of a regression model, classical measurement

error in value-added estimates does not bias the coefficients of the regressions.11 For these

regressions, we simply estimate value-added as the average of residuals Aijct. This estimate

is the same as if we added the instructor fixed effect to a regression based on equation (1).

For each application, we will note which of the three versions of value-added is being used.

These measures of value-added are unbiased when E[ϵijct|Xit, Cjct, ρc, λt] = 0, or in other

words, when students select instructors only on observables. Research suggests that this

9For additional detail, see Appendix C.2.
10Appendix C.3 contains more information about jackknife estimates.
11Bias in these regressions arises when a regressor is correlated with the unobserved error in the model. If

un-shrunk value-added estimates are used as regressors, there may be a correlation between the measurement
error in these estimates and the unobserved error in the model. However, when value-added is the outcome
variable, the measurement error is no longer associated with a regressor, so correlation with the unobserved
error is not a concern.
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assumption holds in the K-12 setting for value-added to test scores (Kane and Staiger, 2008;

Chetty et al., 2014a) and value-added to other non-test outcomes (Jackson, 2018; Petek and

Pope, 2023). However, there is little to no evidence showing whether selection on observables

holds in the higher education setting where students have far more autonomy when selecting

instructors. We discuss this assumption in greater detail in Section 4.

3 Data and Setting

We use two sets of longitudinal administrative data on students: transcript data from Purdue

University, and linked transcript-to-earnings data covering all public universities in Texas.

For both panels, we estimate instructor value-added to undergraduates’ achievement.12

3.1 Purdue student panel

We use data from Purdue University, a selective public institution in Indiana with a strong

focus on STEM fields. Purdue is classified as an R1 university due to its high level of re-

search activity. Our dataset covers student transcripts from 2011 to 2023, providing detailed

information on course enrollment, grades, pre-enrollment characteristics (such as entrance

exam scores), and student demographics.

In Fall 2018, Purdue instituted a policy that assigned students to courses based on

submitted ranked lists of course preferences. Each student submitted a list of preferences,

and randomization was used to break the many ties among students with equal priority

and similarly ranked lists. We observe these ranked lists for each student in every semester

where students were assigned via algorithm: Fall 2018, Fall 2019, and every semester from

Fall 2020 and onward, including Spring semesters.13 Notably, our analysis does not require

the algorithm to be strategy-proof. Instead, we rely on the fact that students with the same

(or similar) submitted lists of preferences had the same (or similar) probabilities of being

assigned to an instructor, which is true by construction. Appendix B contains more details

about the algorithm.

Using randomization-generated variation to produce unbiased estimates which mimic

statistical properties of a very large randomized experiment is now a well-established method.

12We could estimate instructors’ value-added to their graduate students’ achievement for those who teach
graduate students. This would be especially useful for value-added to earnings among students such as
MBAs, JDs, or any quasi-vocational master’s degree students. For such students, classroom instruction is
a primary mode of conveying learning. This method would likely not work well for Ph.D. students because
most advising takes place outside of classrooms and is difficult to quantify.

13A few students, such as athletes, were exempt from the algorithmic assignment, and these students are
excluded from our analysis.
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This method has been applied in several school choice settings,14 and we adapt it to Purdue.

Applying this method, we construct unbiased benchmark estimates of each instructor’s value-

added. These benchmark estimates are the “gold standard” against which we compare our

course history value-added estimates. In addition, we use the variation from the conditional

random assignment to conduct a forecast bias test.

3.2 Texas student panel

We use administrative data from the Texas Education Research Center, which contains linked

transcript-to-earnings records for all students who attended public four-year universities in

Texas from 2011 to 2021. The transcript data show every course taken by each student,

including the instructor of record, course grade and credits earned. The data also contain

pre-enrollment characteristics (such as entrance exam scores) and student demographics.

These transcripts are linked to the state’s unemployment insurance system, allowing us

to track quarterly earnings for students who remain employed in Texas.15 Additionally,

the Texas dataset includes information about instructors, such as their rank, demographic

characteristics, and salary.

The Texas data offer three key advantages for our analysis. First, we can estimate

novel measures of instructor value-added to earnings, which is rarely possible in higher

education and not done in K-12.16 Second, we can explore the relationship between instructor

characteristics and value-added. Third, the 33 Texas institutions17 represent the full array

of public secondary post-secondary institutions in the US. On average, they admit 83% of

applicants (compared to 78% for all US public universities), have similar student-faculty

ratios (19.36 compared to 16.68 overall), and admit students with comparable standardized

test scores (NCES, 1995-2022). This diversity makes the Texas data more reflective of typical

US public universities than Purdue, which is relatively selective. While the Texas sample

does include some highly selective institutions, such as the University of Texas at Austin

and Texas A&M University, it also includes many non-selective institutions. Appendix Table

A-1 compares other characteristics of the Texas sample and Purdue to the typical US public

university.

An additional margin along which the Texas sample reflects characteristics of the average

university is in its use of contingent instructors. According to faculty counts from the

14For example, see Deming et al. (2014) or Angrist et al. (2017).
15Earnings for self-employed workers or those who move out of Texas are not observed. We observe

earnings for 85% of students, so this limitation likely has only a minor impact on our estimates.
16Chetty et al. (2014b) estimate the effect of teacher value-added on income rather than estimating teacher

value-added to income itself.
17Our analysis is limited to baccalaureate-granting institutions. We exclude the Texas A&M: San Antonio

and the University of North Texas at Dallas, which do not provide consistent data over the full period.
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National Center for Education Statistics, 27% of instructors at the average Texas university

are in contingent positions (e.g., instructor, lecturer), slightly more than the corresponding

national value (20%). We will revisit the importance of contingent faculty in Section 7,

where we consider counterfactual faculty retention policies targeted primarily at instructors

on flexible contracts, such as contingent faculty.

In Section 6.3, we compare our estimates of instructor value-added to the type of data

many universities currently use to evaluate instructor quality: student evaluations.We col-

lected student evaluations of instructors by scraping online archives of Texas Tech. These

evaluations, dating back as early as 2006, include students’ overall assessments of the instruc-

tor and course as well as students’ responses to specific questions, such as whether the course

was conducted fairly or whether the instructor was approachable. We merge the evaluations

data with the value-added data by matching course IDs across both datasets.

4 Lagged Achievement is Insufficient to Control for Bias from

Students’ Selection to Instructors

In this section, we demonstrate that controlling for lagged measures of student achievement,

which is typically sufficient in K-12 value-added estimation, is insufficient for eliminating

bias from selection in value-added estimation for higher education. We make this point at

Purdue, where we leverage its unique institutional policy in which students are randomly

assigned to courses and instructors conditional on their preferences. With Purdue data, we

compare forecast bias of the randomization-based benchmark value-added estimates to the

forecast bias of lagged achievement-based estimates.

4.1 Value-added estimation using established methods

Research in K-12 value-added has shown that observable characteristics are often sufficient

to control for student selection across teachers (Kane and Staiger, 2008; Chetty et al., 2014a).

The two most important among these characteristics are lagged student achievement (mea-

sured through prior standardized test scores) and class composition (measured through av-

erages of these lagged scores). Standardized test scores correlate with unobservable ability

that is likely correlated with both future performance and instructor assignment. Classroom

averages of lagged test scores are a sufficient statistic for selection patterns of classmates

(Altonji and Mansfield, 2018).18 These, along with a few other background characteris-

tics, have been found to control for selection in most K-12 settings. This is likely because

18For example, a high-achieving student may be assigned to a teacher that teaches “gifted and talented”
students.
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many students are assigned to classes by central allocation systems in which fairness, if not

randomness, is seen as desirable.

In contrast, students at most universities have the freedom to choose both their courses

and their instructors. When these choices reflect unobserved student types (e.g. motivation,

work ethic, intended field of study, access to resources within the university), which are corre-

lated with future outcomes, value-added estimates that do not account for this selection will

be biased. For example, consider two types of students taking Organic Chemistry: “medical

school” types take Organic Chemistry as a prerequisite for medical school, while “chemist”

types take Organic Chemistry to develop foundational knowledge for their research. For

exposition, the medical school type takes Organic Chemistry primarily to fulfill a require-

ment for a competitive graduate program and has an incentive to find the instructor who

maximizes their likelihood of receiving a high grade. The chemist type, on the other hand,

takes Organic Chemistry to develop valuable skills, and therefore has an incentive to find

the instructor who provides them the most chemistry-specific human capital.19 Estimating

instructor value-added to lifetime earnings without accounting for these different types will

introduce bias because the estimates would be unable to disentangle differences in earn-

ings attributable to the instructors from differences in earnings typical of doctors relative to

chemists.

Compared to K-12, higher education presents a second challenge to value-added esti-

mation because college students typically do not take standardized tests at the end of their

courses. As a result, we lack a consistent outcome measure of student achievement. Addition-

ally, we do not have reliable measures of prior student achievement to control for student

selection, following the K-12 literature. While college entrance exams provide some pre-

college measures of aptitude, they are not tied to specific courses. Furthermore, pre-college

achievement may be less relevant as a lagged measure of student performance, particularly

for students who are older or enrolled in upper division courses. Similarly, GPA from pre-

vious semesters is likely insufficient because grades are a broad and imprecise indicator of

student ability. Although these controls help account for student selection, they may not

fully eliminate bias.

To assess the extent of the challenges introduced by these limitations, we compare value-

added estimates based solely on the conventional K-12 controls, which we will refer to as

“lagged achievement” estimates, to benchmark estimates based on randomization, which we

will refer to as “benchmark” or “conditionally random” estimates. This comparison shows

19Students could be choosing instructors in other ways as well. For example, all students might choose
instructors with easier grading standards. If all students selected instructors in the same way for every
course, forecast bias would not be an issue in higher education. This section will demonstrate that forecast
bias is a problem in higher education.
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the bias that remains when only using traditional controls.

The lagged achievement estimates of value-added are constructed using only the con-

trols used in K-12 estimation. The primary controls for selection in this case are lagged

student achievement using a student’s semester GPA from the previous semester and incom-

ing standardized test scores.20 In addition, we control for a set of student and classroom

characteristics: the student’s level (freshman, sophomore, etc.), gender, race, and age, and

classroom averages of lagged semester GPA and entrance exam scores. These controls rep-

resent the full set of characteristics used in the residualization step described in Equation

3.

Our benchmark estimates of value-added leverage Purdue’s conditionally random course

assignment policy to address the selection challenge. Purdue’s course assignment policy

operates fully through the ranked lists of preferences submitted by students. For example,

students with identical preferences who want to enroll in an over-subscribed course are split

randomly across sections using an algorithm.21 In this setting, we are able to control for

student selection by directly controlling for these lists of ranked preferences.

To control for student preferences, we construct fixed effects for groups of students in the

same course who submit very similar preference lists. Ideally, we would include a fixed effect

for each possible preference list, but this is infeasible. We constructed groups of students by

applying hierarchical clustering to a vector containing indicators for the six most preferred

courses. By grouping on student’s preferred courses, we ensure that students in the same

group have the same or very similar probabilities of being assigned the same instructor within

a course.22

The residualizing equation for value-added using conditional random assignment aug-

ments Equation 1 with assignment probability group fixed effect Pict:

A∗
ijsct = Xitβ + Cjsctγ + Pict + ρc + λt + µjs + ϵijsct. (4)

The fixed effect Pict partitions students in course c during period t into groups of students

with similar lists of ranked preferences. We then use residualized achievement to construct

value-added estimates. Our identifying variation comes from students in the same course with

different instructors who have very similar probability distributions across course sections.

20Because summer academic periods are quite different from school-year academic periods, we use only
data from fall and spring semesters to construct lagged and future GPA variables.

21Purdue uses a unique course registration algorithm to assign undergraduate courses to students, as
developed by Müller et al. (2010). For more details, see Appendix B.

22See Appendix C.4 for details on how we implemented hierarchical clustering.
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4.2 Forecast bias in value-added estimates

To compare value-added estimates from the lagged achievement and conditional randomiza-

tion approaches, we use forecast bias tests which are now well established in the value-added

literature. Forecast bias arises when unobserved factors influencing the selection of students

to instructors are correlated with student achievement, beyond what is captured by the

controls in the model.

Following Chetty et al. (2014a), we define the forecast bias B of value-added estimator

µ̂j as 1 − α, where α is estimated from the regression of residualized achievement Aijct on

µ̂j, where µ̂j is estimated on a different sample:

Aijct = ρc + λt + αµ̂j + ψijct. (5)

If value-added estimates are not biased, the true α is equal to 1 and estimates of α should

be close to 1. Intuitively, the forecast bias B captures the extent to which value-added

measures fail to accurately predict residualized student achievement out of sample, often

due to unobservable factors ψijct influencing student-instructor assignments. When there

is forecast bias, the true impact of an instructor who is one standard deviation above the

mean is not simply σµ̂, the standard deviation of the estimated value-added distribution,

but (1− B)σµ̂. This test is identified by a selection-on-observables assumption, so we need

some experimental or quasi-experimental form of variation for the out-of-sample regressions

to address selection.

We apply two tests for forecast bias that control for selection in different ways. The first

leverages Purdue’s conditional random assignment policy. Specifically, we evaluate whether

out-of-sample value-added estimates from before the policy predict student outcomes during

the period of conditional random assignment, using the policy to control for selection. The

second test relies on semester-to-semester changes in teaching rosters as a quasi-experiment.

The first forecast bias test, which we call the conditional random assignment policy

forecast bias test, or “policy test,” uses Purdue’s enrollment policy to control for selection.

Let µ̂j
pre be value-added estimated on data from 2011-2017, before the conditional random

assignment policy. This test regresses individual student outcomes during the conditional

random assignment period on these out-of-sample empirical Bayes value-added estimates:

Aijct = ρc + λt + αµ̂j
pre + Pict + ψijct, (6)

where Pict are assignment group similarity fixed effects from Equation 4. Since we directly

control for these assignment groups, we test whether our pre-policy estimates of value-added
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Table 1. Conditional random assignment policy forecast
bias test for lagged achievement value-added at Purdue

Next-semester GPA
(1)

Lagged Achievement Value-added 0.332
(0.117)

N 163,653

Notes: The conditional random assignment policy forecast bias test
estimates the explanatory power of value-added estimated before Pur-
due’s algorithmic assignment policy on post-policy changes in stu-
dents’ GPA. The estimates come from a regression of residual next-
semester GPA for student-course pairs in the conditional random as-
signment policy period (2018-2023, where the residualization removes
preference controls to give conditional random assignment), on empir-
ical Bayes value-added estimated from 2011-2018. The value-added
estimates use the lagged achievement model. Standard errors are
clustered at the period-subject level. An estimate closer to 1 indi-
cates better controls for selection.

can predict out-of-sample achievement in the period where randomization, rather than se-

lection, determines student assignment to instructors. If the lagged achievement method

was addressing selection, α would be equal to 1. This policy test is akin to the exercise in

Kane and Staiger (2008), which assesses whether a K-12 teacher’s estimated value-added in

a pre-experimental period predicts the teacher’s student outcomes during a true randomized

experiment.

Column 1 of Table 1 shows the results of the policy forecast bias test for value-added

with lagged achievement. The forecast bias coefficient has a point estimate of 0.332, which

is far from 1. This test shows that lagged achievement alone is not sufficient to control for

unobservable student selection.

While Purdue’s conditional random assignment policy gives us a clean source of variation

for testing bias, the policy test can only be applied in settings with an unusual policy like

Purdue’s. Since we intend our method to be general-purpose, we use a second forecast bias

test which can be applied at any university.

The second forecast bias test, which we call the teaching roster changes forecast bias

test, or “roster test” for short, follows Chetty et al. (2014a) by using year-to-year variation

in teaching rosters as a quasi-experimental source of variation. This variation arises from

instructors’ shifting teaching responsibilities across semesters due to factors like sabbaticals,

leaves, or changes in course loads. We include subject-by-semester fixed effects so that
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identifying variation comes from changes within subject that occur across course levels within

the same semester. For example, an instructor may switch from teaching the fall freshman-

level course in macroeconomics to the fall senior-level course in macroeconomics.

The roster test shows whether the method being implemented systematically over- or

under-estimates instructors’ value-added. In the roster test, we compare changes in the

average value-added of instructors within a subject and course level to corresponding changes

in average student outcomes. Intuitively, if a high value-added instructor goes on sabbatical

and is replaced by a low value-added instructor, the change in average student outcomes

should reflect the drop in average value-added for the course one-for-one. However, if the

value-added estimates are biased, they will not predict changes in average student outcomes

one-for-one.

Formally, let Aslt represent the student-weighted average of residualized student achieve-

ment Aicsjlt within a subject s, course level l and period t cell andMslt represent the student-

weighted average of jackknife empirical Bayes estimates of value-added within that same cell.

Define the difference in average residualized achievement between periods23 Aslt as

∆Aslt = Aslt − Asl,t−2.

Define ∆Mslt analogously. The forecast bias test regresses changes in average residual student

outcomes on changes in average value-added:

∆Aslt = δ∆Mslt + ξslt. (7)

An estimate of δ̂ = 1 indicates that the estimates are forecast unbiased. The roster test

requires an additional assumption for identification, which is that changes in student unob-

servables are unrelated to changes in value-added. A potential violation of this assumption

would occur if students time their enrollment in order to study with high value-added in-

structors. We test this assumption with a robustness check that regresses changes in student

enrollment on changes in value-added and find that changes in value-added within a course

do not predict changes in student achievement. The full results of this test are in Appendix

D.3.

Table 2 shows results of the roster forecast bias test for estimates of value-added to

next-semester GPA at Purdue. We estimated value-added using lagged achievement during

the random assignment period (2018-2023), for comparison with the conditional random

assignment approach, and over the entire data period (2011-2023). Columns 1 and 2 show

23Note that we difference fall semesters with fall semesters and spring with spring because of the seasonality
of courses.
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Table 2. Teaching roster changes forecast bias test for lagged
achievement value-added at Purdue

Lagged Conditionally
Achievement Random

Period: 2018-23 2011-23 2018-23
(1) (2) (3)

∆ average value-added 0.280 0.249 0.793
(0.201) (0.092) (0.135)

N 988 5,867 798

Notes: The teaching roster changes forecast bias test leverages year-
to-year variation in teaching assignments to assess whether changes in
residual student achievement are predicted by shifts in instructor value-
added, with estimates regressing students’ residualized next-semester
GPA on changes in average jackknifed value-added. Columns (1) and
(2) control for lagged achievement; Column (3) adds course preference
controls. Columns (1) and (3) restrict to the conditional random assign-
ment period (2018-2023), while Column (2) shows estimates using the
full period (2011-2023). Observations are at the subject-course level-
period level. Standard errors are clustered at the period-subject level.
An estimate closer to 1 indicates better controls for selection.

results for these two estimates. The point estimates, 0.280 and 0.249 respectively, are both

far from 1. These results suggest that value-added based on lagged achievement is subject

to forecast bias, and indicate that lagged achievement alone does not adequately control for

selection.

In contrast, value-added estimates derived from the conditional random assignment ap-

proach effectively control for selection. Column 3 shows that the forecast bias test yields a

point estimate of 0.793 for value-added under random assignment, suggesting that the pol-

icy sufficiently restricts student selection to identify value-added. Although the confidence

interval does not contain 1, a point estimate of near 0.8 aligns with expectations from the

value-added literature.24

The results in this section confirm that conventional controls from the K-12 value-added

literature do not address the student selection that is prevalent in higher education. Without

properly accounting for this selection, value-added estimates using these established controls

will be biased. At Purdue, our unique institutional setting — where students with identical

stated preferences for oversubscribed courses were randomly assigned to sections — allows

us to effectively control for this selection.

24For instance, Kane and Staiger (2008) found a forecast bias point estimate of roughly 0.8 when estimating
value-added using explicit random assignment of elementary students to teachers.
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5 Augmenting Value-added with Course Histories

Unlike our previous application in Purdue, many universities do not have policies that re-

strict student selection across instructors. We propose a method to address student selection

on unobservables in the absence of such a policy: grouping students based on their “course

histories,” or the set of other courses that a student has taken. We demonstrate that control-

ling for course histories reduces bias to a degree comparable to conditional randomization

at Purdue. We further demonstrate that our course history controls perform well when

estimating value-added to GPA and earnings for the 33 public universities in Texas in our

sample.

5.1 Estimating value-added with course histories

Student selection into instructors’ classes poses a challenge for value-added estimation when

the model fails to account for the unobservable factors driving this selection. This is because

those unobservables — such as preferences, ambitions, intentions, and latent abilities — are

likely correlated with students’ future outcomes. Returning to our example of the two types

of students who take Organic Chemistry — students who intend to go to medical school

and students who intend to become chemists — if these types select different instructors,

value-added estimates that do not account for this selection will be biased.

We argue that students reveal their unobserved types through the courses they have pre-

viously taken, and that we can use these past courses to make the relevant unobservables

as good as observable for the purpose of estimating value-added. We call this set of other

courses a student’s course history.25 Conceptually, we argue that a student’s course history

acts as a sufficient statistic for the effects of unobservable variables on selection into instruc-

tors’ classes, just as lagged achievement acts as a summary statistic for selection in K-12.

Though we cannot make unobservables observable, we can address selection by comparing

students within the same course history “type”, thereby comparing only students who have

the same unobservables.

The logic of this approach is familiar within education economics. In an influential

methodological paper, Dale and Krueger (2002) proposed a comparison of the earnings of

25In the estimation, we include both contemporaneous and past courses to better classify students earlier
in their academic careers. Since students typically enroll in courses before the semester begins, their choices
are made before being influenced by any instructor that semester. This approach also allows us to estimate
value-added for first-year students in their first semester, who would otherwise be viewed uniformly if we
only considered previously-taken courses.
At many universities, students adjust their schedules during the first few weeks of a semester. If instructor

impacts occur during this “shopping” period, our estimates could be biased. However, we expect instructor
effects to emerge later in the semester.
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students who were admitted to the same set of colleges. In their case, the unobservables were

student aptitudes and preferences for various college attributes and colleges’ observations

of the students’ qualities that are only revealed in essays, campus visits, and interviews.

Two students with the same admission “portfolios” necessarily applied to the same colleges,

thereby revealing their unobserved preferences, motivations, and aptitude. Furthermore, two

students with the same portfolio must have been viewed as similar by admissions officers who

observe essays and interviews which are unobservable to the econometrician. Thus, argued

Dale and Krueger, application portfolios could plausibly make the unobservables that are

relevant for college selection as good as observable, since two students with the same portfolio

might be so alike on unobservables that their actual college choices were plausibly random.

Similar to admissions portfolios, course histories contain rich information that make

unobservables relevant for instructor selection as good as observable. Intuitively, students

reveal that they are similar on unobservables through their observed course choices. When

students choose courses, they take into account many of their own unobservables: career

goals, motivation, research interests, and social networks. For example, medical school type

students choose to enroll in MCAT preparation courses in Psychology and Human Anatomy

that chemist type students would likely not take. In Sections 5.3 and 5.4, we will show

evidence that course histories do indeed reduce forecast bias in value-added estimation, and

therefore reveal unobservable similarities between students.

Formally, we define a course history for student i in period t as the set of courses that

student i has chosen to enroll in during periods t′ ≤ t. To estimate value-added with course

history controls, we augment Equation 1 with a course history similarity group fixed effect

Hict:

A∗
ijsct = Xitβ + Cjsctγ +Hict + ρc + λt + µjs + ϵijsct. (8)

The fixed effect Hict partitions students taking course c during period t into groups based

on the similarity of their course histories. We create these course history similarity groups

using hierarchical clustering on the course histories of students enrolled in the same course,

across instructors.26 We encode course histories as indicator vectors of all possible courses.27

Specifically, we implement hierarchical clustering with the goal of ensuring that students in

the same group would be similar on unobservable “types” that determine their instructor

choice and future outcomes. After hierarchical clustering, approximately 30% of students

26For additional details about our hierarchical clustering approach, see Appendix C.4.
27We do not partition the data further, such as by instructor or grade in previous courses, due to compu-

tational and data limitations. Incorporating these characteristics may be a direction for future research.
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are grouped into singletons. For the main analysis, we exclude students in singleton groups.

A robustness check in Appendix D.2 shows that pooling all singleton students within each

course and period into a single reference group has little effect on the results.

5.2 Common sense checks of course history groups

Hierarchical clustering based on course histories often yields student groups that align with

common sense understandings of how past coursework signals future intentions. We pro-

vide three demonstrative examples of actual groups identified by our hierarchical clustering

method. Corresponding to each example, the panels of Appendix Table A-4 list the some of

the courses that appear most commonly in the course histories of these students, as well as

their average GPA and SAT scores. Note that within course, all students in these examples

were in the course during the same semester.28

The first example is of two groups identified among students taking Organic Chemistry

at Texas A&M: “chemist types” and “medical school types.” Students in the first group took

courses typical of Chemistry or Biomedical Engineering majors: Engineering Mathematics,

Computational Engineering, Fundamentals of Chemistry, and courses from the Biomedical

Engineering program. In contrast, students in the second group commonly took courses in the

Health core, along with a Psychology course and a Sociology course strongly recommended

for MCAT preparation. These courses identify the second group as “medical school type,”

who are likely in Organic Chemistry to fulfill a medical school prerequisite.

The second example is of groups identified among students taking Intermediate Microe-

conomics, again at Texas A&M. Students in the first group took courses in the business core,

like Marketing, Accounting, and Management Information Systems while students in the sec-

ond group took courses in the Agricultural Economics program.29 Hierarchical clustering,

therefore, distinguishes “business” and “agricultural economics” type students enrolled in

Intermediate Microeconomics.

The third example highlights groups of students who took Calculus 3 at Purdue. Stu-

dents in the first group most frequently took Computer Science core courses, and are likely

“computer science” type students. Students in the second group most frequently took en-

gineering core courses, and many of the students took the course Computer Science with

Applications to Engineering. These students are likely “engineering” type students.

These examples reveal a form of unobservable heterogeneity in students enrolling in the

same course. Course histories allow us to categorize students into “types” that may reflect

28We do not report the semesters for privacy.
29Texas A&M has a strong program in agriculture, which was the central focus of the university when it

was established as the Agricultural & Mechanical College of Texas in 1876.

21



latent differences in motivations, ability, or work ethic. To test whether these differences

could bias value-added estimates due to correlation with instructor selection, we conducted

Pearson’s χ2 independence test.30 For students in Organic Chemistry and Calculus 3, we

reject the null hypothesis that course history groups and instructor choice are independent

at the 5% level. For Intermediate Microeconomics, we reject this null at the 10% level.

This differential selection by course history group could not be fully addressed by lagged

achievement alone. For instance, the “business” and “agricultural economics” type students

in Intermediate Microeconomics had nearly identical GPAs from the previous semester, as did

the “computer science” and “engineering” students in Calculus 3. Despite small differences

in entrance exam scores, the distributions of both previous-semester GPA and SAT scores

show substantial overlap between groups for both courses.31 Thus, controlling only for lagged

achievement without accounting for course history groups would involve comparisons across

these distinct groups, leading to biased value-added estimates for instructors, as students in

different course history groups appear to have different future intentions.32

While course histories address the selection challenge in these three examples, the ques-

tion of whether they address selection more broadly remains yet unanswered. In the next

section, we conduct forecast bias tests to show that course histories can indeed control for

student selection.

5.3 Forecast bias estimates for course history value-added at Purdue

To test whether controlling for course histories effectively addresses bias from students’

instructor choices, we apply the two forecast bias tests described in Section 4.2 to value-

added estimates from Purdue that incorporate course history controls. Table 3 shows results

from the policy forecast bias test, which estimates value-added using data from pre-2018

and predicts student outcomes from 2018-2023, controlling for student selection using the

conditional random assignment policy. The table shows results for course history value-

added. With a point estimate of 0.72, course histories address unobservable student selection

much better than lagged achievement alone, which had a point estimate of 0.332 for the same

test, shown in Table 1.

Table 4 shows results from the roster forecast bias test for course history value-added. We

estimate jackknife value-added, which excludes data from period t and t−2 the value-added

estimate, using course histories for both the full Purdue panel and for the 2018-2023 period,

30Appendix Table A-4 summarizes the p-values from these tests for each example.
31See Appendix Figures A-1 and A-2.
32This issue may partly stem from the limitations of GPA and SAT scores as measures of student ability,

particularly in higher education. However, these are the most widely available metrics, and few institutions
provide better alternatives.
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Table 3. Conditional random assignment policy
forecast bias test for course history value-added at
Purdue

Next-semester GPA
(1)

Course History Value-added 0.720
(0.069)

N 158,875

Notes: The conditional random assignment policy forecast
bias test estimates the explanatory power of value-added es-
timated before Purdue’s algorithmic assignment policy on
post-policy changes in students’ GPA. The estimates come
from a regression of residual next-semester GPA for student-
course pairs in the conditional random assignment policy pe-
riod (2018-2023, where the residualization removes preference
controls to give conditional random assignment), on empiri-
cal Bayes value-added estimated from 2011-2018. The value-
added estimates include course history similarity group fixed
effects. Observations are at the student-course-instructor-
period level. Standard errors are clustered at the period-
subject level. An estimate closer to 1 indicates better controls
for selection.
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Table 4. Teaching roster changes forecast bias test for
course history value-added at Purdue

Course Histories
Period: 2018-23 2011-23

(1) (2)

∆ average value-added 0.706 0.910
(0.123) (0.092)

N 810 5,785

Notes: The teaching roster changes forecast bias test leverages
year-to-year variation in teaching assignments to assess whether
changes in residual student achievement are predicted by shifts in
instructor value-added, with estimates regressing students’ residu-
alized next-semester GPA on changes in average jackknifed value-
added. Column (1) restricts to the conditional random assign-
ment period (2018-2023), while Column (2) shows estimates us-
ing. Both columns include course history controls. the full period
(2011-2023). Observations are at the subject-course level-period
level. Standard errors are clustered at the period-subject level.
An estimate closer to 1 indicates better controls for selection.

which followed the implementation of Purdue’s conditional random course assignment policy.

The forecast bias estimates for value-added using course history controls show a large im-

provement over estimates that control only for lagged achievement. On the full Purdue panel,

the forecast bias coefficient is 0.910. When estimated solely during the post-randomization

period, the coefficient is 0.706, which is close to the estimate obtained from the conditional

random assignment approach. We suspect that the shorter panel, which overlaps with the

Covid-19 pandemic, complicates value-added estimation during the post-randomization pe-

riod.

Finally, we demonstrate that our instructor value-added estimates with controls for course

histories align with instructor value-added estimates that leverage conditional random as-

signment. Since we estimate course history and conditional random assignment value-added

using only students in non-singleton groups, the different measures estimate value-added for

slightly different groups of students.33 This sample difference means that these two measures

of value-added are somewhat different. To make the estimation samples more comparable,

we restrict the estimation sample of both approaches to the set of students who were in

non-singleton assignment groups and in non-singleton course history groups.

Course history and conditionally random value-added methods generate very similar

33A robustness check in Appendix D.2 shows that pooling all singleton students within each course and
period into a single reference group has little effect on the results.
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rankings of instructors. The correlation between within-subject instructor ranks of value-

added with course histories and within-subject instructor ranks of value-added with condi-

tional randomization is 0.83. Rank comparisons between value-added estimates are an im-

portant exercise since value-added is always a relative measure: quality is measured relative

to the mean, within a subject. Since course history and conditionally random value-added

make very similar distinctions between low- and high-value-added instructors, course history

value-added is indeed addressing student selection at Purdue.

5.4 Forecast bias estimates for course history value-added in Texas

The forecast bias tests from Purdue in the previous section confirm that value-added esti-

mates that control for course histories substantially reduce bias in value-added estimation

from student selection to instructors. One highly appealing feature of this method is that

it can be applied at any university. For the rest of the paper, we focus our attention on

value-added estimation in Texas, where we have linked transcript-to-earnings data for 33

public universities.

In Texas, we estimate value-added to both next-semester GPA (as at Purdue) and future

earnings. Specifically, we estimate value-added to (log) earnings six years after a student

enters college.34

We first verify that these value-added measures are forecast unbiased. To do so, we apply

the teaching roster change forecast bias test, using quasi-experimental variation in teaching

rosters to identify the forecast bias coefficients. Figure 1 plots forecast bias coefficients

separately at each university, for both lagged achievement and course history value-added

estimates.

The results of the forecast bias tests indicate that using course history controls effec-

tively accounts for unobservable student selection. As was the case in Purdue, value-added

estimates that control only for lagged achievement suffer from substantial forecast bias. For

value-added estimates of next-semester GPA, incorporating course histories significantly re-

duces forecast bias compared to using only lagged achievement. Most estimates fall between

0.8−1.2, resulting in a median forecast bias estimate of 0.17. Similarly, course histories help

reduce forecast bias in value-added estimates of earnings. For all but one university, course

history controls reduce bias, with a median forecast bias of 0.15 for value-added to earnings.

34Choosing the right year to measure earnings is challenging because students leave college, begin their
careers, and reach the steady state of their earnings at different times. Ideally, we would measure value-added
to earnings far enough into the future to avoid these timing issues. However, due to the relatively short
panel of earnings data, we select the six-year mark, as this is the earliest point where most students are on a
stable earnings trajectory and their earnings are high enough to exclude part-time jobs held during college.
Our results remain consistent when using alternative measures of earnings.
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Figure 1. Teaching roster changes forecast bias test for Texas universities

(a) Next-semester GPA (b) Log earnings six years post-entry

Notes: The teaching roster changes forecast bias test leverages year-to-year variation

in teaching assignments to assess whether changes in residual student achievement

are predicted by shifts in instructor value-added, with estimates regressing students’

residualized next-semester GPA on changes in average jackknifed value-added. Bias co-

efficients estimated separately for each Texas university, controlling for period-subject

fixed effects. Observations are at the subject-course level-period level. Standard errors

are clustered at the period-subject level. An estimate closer to 1 indicates better con-

trols for selection.

These findings demonstrate that course history controls are effective at controlling for

student selection across a wide range of universities. Having addressed the bias in value-

added estimates, we next use estimates of instructor value-added to describe the dispersion

of value-added across instructors.

6 Effects of Post-secondary Instructors

Having developed a method for estimating instructor value-added in higher education, this

section uses our new method to assess whether instructors vary in their impacts on students’

outcomes. The results of this section reveal that instructors do, in fact, impact students’

future GPA and earnings. We then document that instructor characteristics explain very

little of the variation in value-added. Finally, we compare our value-added estimates to

students’ subjective evaluations of instructor quality.
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Table 5. Variances of value-added distributions

Next-semester GPA Log Earnings
(1) (2)

All 0.018 0.028
R1 0.022 0.036
Non-R1 0.016 0.025

Notes: Variance of the value-added distributions were
estimated within subject and institution, using max-
imum likelihood estimation, following Gilraine et al.
(2020). This table then shows student-course-period
weighted averages of these variances across subject and
institution. Universities are split according to their 2010
Carnegie classification: R1 universities have “very high
research activity.”

6.1 Instructors impact students’ future outcomes

Instructors vary in their ability to impact students’ outcomes. Table 5 summarizes the

estimated variances in value-added to both next-semester GPA and future earnings, based

on data from the Texas universities sample. These variances are substantial, indicating that

instructors have meaningful impacts on students’ short- and long-term outcomes. Taking

the square root of these variances provides estimates of the effect of moving from an average

instructor to an instructor with 1 standard deviation higher value-added within the same

course. We find that an instructor with 1 s.d. higher value-added to GPA increases their

students’ next-semester GPA by 0.13, which is approximately 4.5% of the mean. For the

average student, this increase roughly corresponds to raising their grade from a B to an

A in one course next semester. This estimate is smaller than estimates of value-added for

college algebra instructors on end-of-term exams DeVlieger et al. (2018). Instructors could

influence students’ future grades through multiple channels. For example, they may vary in

their ability to enhance students’ human capital, or they could affect students’ future course

selections.

Instructors also affect students’ future earnings. An instructor with 1 s.d. higher value-

added to earnings increases students’ earnings by 17% six years after they enter college.35

Similar to value-added for GPA, instructors could influence future earnings through several

35This estimate includes only students who have non-zero earnings in at least one quarter during the sixth
year post-matriculation. We observe earnings for more than 80% of the students in our sample. Students
without earnings data likely fall into two categories: those with no wage earnings during the year, and those
working outside Texas (since Texas UI data only capture in-state earnings). We speculate that the latter
group is larger. If out-of-state students have systematically different earnings than those working in Texas,
and if instructor choice is correlated with students’ likelihood of moving out of state, omitting these earnings
may introduce bias into our value-added estimates.
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pathways, such as increasing human capital, improving graduation rates, or altering students’

field of study.

We find that the variance of instructor value-added varies across institutions. Rows 2 and

3 of Table 5 show the average variance of value-added to next-semester GPA and earnings

separately for R1 (high research intensity) and non-R1 universities, respectively. On average,

the variance of value-added to both GPA and earnings is higher at R1 universities than at

non-R1 universities. The larger variance of value-added to both grades and earnings at R1

universities could be due to the fact that the distributions of both next-semester GPA and log

earnings six years post-entry is are more skewed at R1 institutions than non-R1 institutions.

The average within institution and subject skew for next-semester GPA is −1.47 at R1

institutions and −1.12 and non-R1 institutions. The average skew for log earnings six years

post-entry is −1.43 at R1 institutions and −1.43 at non-R1 institutions. The patterns for

earnings is intuitive: since more students at higher-ranked universities have higher “upside”

jobs, especially immediately post graduation, instructors may have more ability to impact

the early career earnings of their students.

Figure 2. Distribution of subject-level variance in course history value-added

(a) Next-semester GPA (b) Log earnings six years post-entry

Notes: Smoothed kernel density plot of average variances of value-added across subjects

within an institution. Variance of the value-added distributions were estimated within

subject and institution, using maximum likelihood estimation, following Gilraine et al.

(2020).

Additionally, Figure 2 shows smoothed density plots of average value-added to future
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GPA and earnings across subjects within each institution. Average value-added to GPA

is relatively compressed, with variances between 0.006 and 0.038, corresponding to grade

increases of 0.08 to 0.19 for moving to a 1 s.d. better instructor. Average value-added to

earnings is more spread, with variances between 0.008 and 0.08, corresponding to income

increases of 9% to 28% for moving to a 1 s.d. better instructor.

Table 6. Variances of value-added for selected subjects

Next-semester GPA Log Earnings
(1) (2)

All 0.018 0.028
Biology 0.016 0.036
Computer Science 0.026 0.046
Education 0.020 0.014
Engineering 0.024 0.053
Social Sciences 0.015 0.021

Notes: Variance of the value-added distributions were estimated
within subject and institution, using maximum likelihood estimation,
following Gilraine et al. (2020). This table shows student-course-
period weighted averages of these variances, across institution and
within 2-digit CIP codes.

We also find that instructor impacts vary across subjects. Table 6 summarizes the average

variance in instructor value-added across institutions, aggregated by two-digit CIP code.36

The first column of the table summarizes the variance in value-added to next-semester GPA.

Fields with large fractions of within-major students taking courses, such as Computer Science

and Engineering, have higher variance of value-added to GPA. In contrast, fields like Biology

and Social Sciences, which offer more service courses, show smaller variances in instructor

value-added to GPA, suggesting that choice of instructor matters more in subjects with few

service courses and many in-major students. Indeed, we find that the correlation between

the mean of average value-added to next-semester GPA and mean subject persistence is

positive (0.32). This pattern is intuitive since the subject-specific human capital gained by

the average student in an engineering course, who will likely take more engineering courses

next semester, will be more relevant to their next-semester GPA than the human capital

gained by the average student in a biology course, who is more likely to be taking biology

as a general requirement or prerequisite for another subject.

The second column of Table 6 reports the variance in value-added to future earnings.

The smallest variances in earnings value-added are in fields like Education, and the Social

36CIP stands for Classification of Instructional Programs. These identifiers from the National Center of
Education Statistics allow us to compare majors across institutions even when institutions have different
major prefixes.
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Sciences, while the largest are in Computer Science and Engineering. One interpretation of

these findings is that instructors have more influence on future earnings in fields that lead to

careers with greater income variability. Indeed, we find that a subject’s variance in earnings

and the variance in value-added for instructors in that subject are positively correlated

(0.29). Intuitively, earnings for graduates in Engineering and Computer Science can differ

significantly based on job placement, and the higher variance in value-added suggests that

instructors may play a critical role in equipping students with the skills needed to secure

high-paying jobs. In contrast, graduates in Education, who often become teachers, typically

have earnings determined by standardized pay scales, which show little variation within

the same cohort. The average standard deviation of log earnings for students in Education

courses is 0.64, much lower than for students in Engineering or Computer Science courses

(0.75 for both subjects).37 These results highlight the role of major choice as a possible

factor mediating the impact of instructor value-added on future earnings.

6.2 Characteristics of high-quality instructors

Fixed instructor characteristics explains little of the variation in value-added. Table A-3

shows regressions of standardized estimates of value-added on a set of instructor characteris-

tics in Texas: rank, race/ethnicity, gender, age and salary.38 Note that since value-added is

estimated and normalized within institution and subject, these fixed effects are not picking

up differences in the allocation of instructors with high value-added across subjects. The

R2 in both regressions is small, with values of 0.016 for value-added to GPA and 0.009 for

value-added to earnings. This result aligns with some of the value-added literature in K-12,

which finds that observable characteristics do little to predict teacher value-added, and sug-

gests that value-added is new information that could not have been obtained through other

means.39

Although instructor characteristics do not account for the variation in value-added, we

still observe some heterogeneity in average value-added across different instructor character-

istics. Table 7 summarizes the estimates from separate regressions of standardized value-

37Standard deviations were averages taken across institutions within a subject, weighted by number of
student-course-period observations.

38Since our primary value-added estimates are fixed across time, we take the modal observed academic
rank.

39Seminal work by Hanushek (1971) and Ehrenberg and Brewer (1994) suggest that characteristics of
K-12 instructors are only weak predictors of student achievement, while more recent work suggests that
other factors, such as principal evaluations and certifications, predict achievement (Jacob and Lefgren, 2004;
Clotfelter et al., 2007). In higher education, some work has studied differences in instructor impacts between
tenure-track and contingent faculty. There is little consensus in this area: previous work has found adjunct
instructors to improve (Bettinger and Long, 2010; Figlio et al., 2015), reduce (Ehrenberg and Zhang, 2005),
or have no effect on student achievement relative to tenure-track instructors.
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Table 7. Heterogeneity in value-added across instructors

Value-added

GPA Earnings
(1) (2)

A: Academic Rank
Full Professor -0.026 0.019

(0.017) (0.020)
Associate Professor -0.021 0.071***

(0.018) (0.021)
Contingent Instructors -0.005 0.047**

(0.014) (0.015)
N 69,475 62,790
F-test 0.218 0.052

B: Race
Asian -0.040** -0.030**

(0.015) (0.013)
Black -0.051*** -0.020

(0.013) (0.015)
Hispanic 0.016 0.008

(0.016) (0.014)
N 69,537 62,851
F-test 0.001 0.090

C: Female -0.002 0.013
(0.014) (0.010)

N 69,537 62,851

D: International -0.061*** -0.007
(0.012) (0.011)

N 69,537 62,851

Notes: Estimates are from separate regressions of value-added on in-
structor characteristics, where each column in each panel estimates a
separate regression. The omitted instructor rank category in Panel
A is Assistant Professor; the omitted race in Panel B is white. Re-
gressions control for subject and institution, with observations at the
instructor level. Standard errors are clustered at the institution level.
Value-added values are standardized, so the interpretation of the co-
efficient is standard deviation difference in average value-added for a
given outcome for instructors having a given characteristic relative to
the base category.
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added on various instructor characteristics. The coefficients represent the difference in av-

erage value-added associated with a given characteristic, relative to the omitted category

(respectively: assistant professors, white, male, and native-born). Value-added estimates

are standardized, so the interpretation of the coefficient is standard deviation difference in

average value-added for a given outcome among instructors having a given characteristic

relative to the base category. Additionally, for rank and race regressions, in Panels A and

B, we report p-values for an F-test of coefficient equality as there are multiple categories. It

is important to note that for some instructors who began teaching in later years, we cannot

estimate value-added to earnings, as our estimation requires us to observe earnings up to six

years after a student takes a given course.

In Panel A, we highlight the regressions by academic rank. While there are no signif-

icant differences in value-added to GPA across ranks, we do find significant differences in

value-added to earnings. On average, full professors have similar value-added to assistant

professors, whereas associate professors and contingent instructors exhibit significantly higher

value-added than assistant professors.40 Additionally, an F-test rejects the null hypothesis

that these coefficients are equal.

6.3 Correlation between value-added and student evaluations

In the absence of quantitative measures of instructor quality, many universities rely on stu-

dent evaluations to assess teaching effectiveness. In this section, we investigate whether these

subjective evaluations align with instructor quality as measured by value-added. To conduct

this analysis, we scraped teaching evaluations for all courses from Texas Tech covering 2006-

2023. We calculated average evaluation scores for each instructor over these periods and

merged these averages with the corresponding value-added estimates.

The student evaluation surveys vary slightly across years and incorporate a wide variety

of questions. To create a standardized measure, we focused on three types of questions that

appeared in all years. Questions in the “Instructor Score” and “Course Score” categories

capture students’ general impressions of the instructor and the course, respectively. Ques-

tions in the “Teaching Score” category specifically assess the instructor’s effectiveness in

teaching and conveying material. We standardized these average evaluation scores within

each subject and institution to ensure comparability across time and courses.41

The first two columns of Table 8 summarize bivariate regression estimates of the relation-

40These findings are consistent with Figlio et al. (2015), who report higher levels of student learning
in first-semester courses taught by contingent faculty compared to tenure-track faculty at Northwestern
University.

41For the exact questions and categorizations, see Appendix E. Additionally, we show correlations with
two other categories of questions that were only available for part of our panel.
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ship between instructor value-added to GPA and earnings on these aggregated evaluation

scores. Instructor value-added scores in each column are standardized within subject to be

on a common scale. The first column shows that value-added to GPA and evaluation scores

are significantly correlated. The largest coefficient indicates that on average, instructors

with 1 s.d. better Teaching Score evaluations have 0.102 s.d. higher value-added to GPA. In

contrast, we find that instructor value-added to earnings is not significantly correlated with

any student evaluation score, again suggesting that there are within-instructor differences

between value-added to GPA and value-added to earnings.

Table 8. Comparison of instructor value-added to stu-
dent evaluations

Value-added

GPA Earnings Leniency
(1) (2) (3)

A: Instructor Score 0.082*** -0.004 0.163**
(0.019) (0.022) (0.051)

N 3,204 2,956 3,531
R2 0.008 0.000 0.028

B: Teaching Score 0.102*** -0.007 0.157***
(0.023) (0.023) (0.046)

N 3,204 2,956 3,531
R2 0.012 0.000 0.024

C: Course Score 0.088*** -0.015 0.169***
(0.020) (0.025) (0.049)

N 3,204 2,956 3,530
R2 0.009 0.000 0.030

Notes: Estimates are from separate bivariate regressions of in-
structor and course quality measures, based on student evalua-
tions, on instructor value-added or leniency. Evaluations are from
Texas Tech between 2006-2023. The specific questions related to
instructor, teaching, and course quality are detailed in Appendix
E. Leniency is defined as the difference between an instructor’s
average grades and the average grades given by other instructors
teaching the same subject at the same level. All student evalua-
tion scores, value-added, and leniency measures are normalized.
Regressions control for institution, with observations at the in-
structor level. Standard errors are clustered at the subject level.

Motivated by previous work suggesting that student evaluations distort grading incen-

tives in the classroom (Nelson and Lynch, 1984; Eiszler, 2002), we also investigate whether

33



instructors who assign higher grades to students receive higher evaluation scores. In the

third column of Table 8, we assess the relationship between student evaluations and in-

structor leniency to explore whether students prefer easier courses. We measure leniency by

calculating the difference between the average grades assigned by an instructor in a course

and the average grades given by other instructors teaching similar courses. The measures of

leniency are then standardized within subject for comparability of estimates.

Instructors who are more lenient tend to receive higher ratings. For example, an in-

structor with 1 s.d. higher course quality scores has 0.169 s.d. higher leniency scores. Fur-

thermore, the correlation between leniency and evaluations is stronger than the correlation

between value-added to GPA and evaluations. For each category of evaluation questions,

the correlation with leniency is approximately twice the magnitude of the correlation with

value-added. This provides suggestive evidence that students favor instructors who assign

higher grades.42

7 Policy Implications

Since student evaluations are relatively uncorrelated with measures of instructor value-added,

universities could improve student outcomes by making personnel decisions using value-added

instead of student evaluations. To show that this kind of policy would be feasible, we find

that evaluation scores are predictive of retention for contingent instructors at Texas Tech, es-

pecially for instructors in the bottom 5% of the evaluation distribution. We then benchmark

possible earnings gains using two counterfactual deselection exercises: one that replaces the

bottom 5% of instructors, motivated by work in Hanushek (2009) and Chetty et al. (2014b),

and one that uses the estimated relationship between evaluations and retention. Both find

gains to selecting instructors on value-added to earnings relative to selecting students on

student evaluations.

7.1 Student evaluations and retention of contingent instructors

A counterfactual policy that uses value-added for personnel decisions somewhat presupposes

that institutions currently use student evaluations, the available measure of instructor qual-

ity, to make such decisions. To show that student evaluations do enter personnel decisions

in practice, we investigate the relationship between the student evaluations an instructor

receives and their probability of teaching at the same institution the next year. For this

42Note that in this exercise, we do not control for backgrounds of students when constructing leniency
measures.
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exercise, we focus on contingent instructors at Texas Tech, as contingent instructors are less

likely to have longer-term employment contracts restricting termination.

We define “retention” Rj,s,y+1 of a given contingent instructor j in subject s as an in-

dicator for whether that instructor is teaching a course again in subject s at Texas Tech

during the next academic year. We then calculate the average “Instructor Score” Sj,s,y from

student evaluations for instructor j in subject s during year y. We predict retention with

the evaluation score both linearly and non-linearly, using

Rj,s,y+1 = Sj,s,y + λs + ϵj,s,y (9)

Rj,s,y+1 =
19∑
v=1

Sv
j,s,y + λ′s + ϵ′j,s,y, (10)

where Sv
j,s,y is an indicator for instructor j having an evaluation score in the vth vigintile

within subject s during year y, with the top vigintile as the reference group. We also estimate

these equationg with controls for estimates of value-added and vigintiles of estimated value-

added, respectively.

We find that student evaluation scores predict retention. Appendix Table A-5 shows

results from the linear regressions described in Equation 9, with and without value-added

controls. Additionally, figure 3 shows a binned scatter plot of retention and evaluations

along with the estimated linear relationship. An instructor with 1 s.d. better evaluation

scores is 4 percentage points more likely to be retained, on average, which is about 5% of the

mean, or roughly 10% of a standard deviation. Neither measure of value-added significantly

predicts retention. The estimates of coefficients on value-added in Column 2 are an order of

magnitude lower than the corresponding estimates for evaluation scores.

We also find that student evaluation scores and retention have a non-linear relationship.

Appendix Table A-6 shows results from the vigintile regression in Equation 10. The bottom

5% of instructors is significantly less likely to be retained than other groups. Relative to the

omitted top 5%, instructors in the bottom 5% are nearly 30% less likely to be retained. The

bottom 5% is also much less likely to be retained than the next lowest vigintile. The binned

scatter plot in Figure 3 illustrates this nonlinearity. Above the bottom 5%, evaluations and

retention have a somewhat linear relationship. However, the likelihood of retention plunges

for the instructors who receive the worst evaluations. Additionally, the other two panels of

Figure 3 show that value-added does not have a strong relationship with value-added.

The drop in retention rates for contingent instructors in the bottom 5% of the student

evaluation distribution is notable. Moreover, deselection in this range aligns with work by

Hanushek (2009) and Chetty et al. (2014b), which discuss potential gains in K-12 student
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Figure 3. Retention rates and instructor quality at Texas Tech

Notes: Binned scatter plots of retention indicators against three measures of instruc-

tor quality for contingent instructors at Texas Tech: evaluations, value-added to GPA

and value-added to earnings. Each point plots the average retention against average

instructor quality measure within vigintiles of instructor quality measures. Addition-

ally, we show the best fit lines from a regression of retention on the instructor quality

measure. All variables are residualized on subject and year.

achievement under policies that deselect instructors in the bottom 5% of the value-added

distribution. In Section 7.2, we perform a back-of-the-envelope counterfactual exercise using

this kind of deselection on value-added to assess the potential benefits of incorporating value-

added in personnel decisions. In Section 7.3, we conduct an additional exercise that uses

the estimated relationship between retention and student evaluations to assess the benefits

of using value-added for retention of contingent instructors in a more realistic way.
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7.2 Full deselection using value-added

To assess the possible gains from using value-added to earnings in personnel decisions instead

of student evaluations, we conduct back-of-the-envelope deselection calculations following

Chetty et al. (2014b). This exercise is motivated both by the deselection suggestion in

Hanushek (2009) and by our empirical finding that, at Texas Tech, instructors in the bottom

5% of the evaluation distribution do indeed seem to be retained at much lower rates.

We calculate the average per-student increase in earnings six years post-college entry

from replacing an instructor in the bottom 5% of the value-added to earnings distribution

with a mean instructor. The ingredients of this calculation are as follows: assuming a

normal distribution of value-added, an instructor in the bottom 5% is, on average, 2.063

standard deviations from the mean instructor; the standard deviation of the value-added

to log earnings distribution is 0.17; and the median of quarterly earnings in our sample is

$8,638. We use median earnings instead of mean earnings to limit the effects of outliers.

The average per-student increase in earnings six years post-college entry from replacing an

instructor in the bottom 5% is:

G = 2.063× $8, 638× 0.17 = $3, 029,

which is about 35% of median student earnings. These gains are substantial.43

In order to investigate how de-selecting certain groups of instructors could impact earn-

ings, we conduct an additional back-of-the-envelope calculation that uses subject-institution-

specific variances of value-added. First, we identify each instructor in the bottom 5% of the

value-added distribution within their subject and institution. We then calculate the gains in

earnings from replacing six possible groups of instructors with an average instructor, within

each subject and institution: replacing all instructors in the bottom 5%, and replacing in-

structors of each rank separately who are in the bottom 5% of instructors, for contingent

instructors, assistant professors, associate professors, full professors, and all tenure track

instructors.

Table 9 reports results from this exercise. Both income and gains in income from replace-

ment are highly skewed distributions, so Panel A, which presents gains from replacing all

bottom 5% instructors, shows the median gain. The median increase in quarterly earnings

six years post-entry from replacing all bottom vigintile instructors is $2, 644, or about 30% of

median earnings. This substantial gain is primarily driven by two factors. First, the estimate

is driven by our relatively large estimate of the variance of the distribution of value-added to

43Note that in this section, we treat estimated value-added as true value-added. Accounting for estimation
error encompasses scaling estimates by their reliability, and would shrink the estimates of gains somewhat.
In the next section, we address this issue in another exercise.
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Table 9. Average gains for deselection of the bottom 5%

Average Gain Percent Gain over Average Earnings
(1) (2)

A: Medians
Replace All $2,644 30.61%

B: Means
Replace All $6,182 68.43%
Replace Contingents $3,850 42.62%
Replace Assistants $1,155 12.79%
Replace Associates $1,478 16.36%
Replace Full Professors $1,511 16.72%
Replace Tenure Track $2,749 30.43%

Notes: Estimates are average gains to replacing instructors in the bottom 5% of the value-
added distribution within each of the given categories. Column 1 shows average dollar gains
from the replacements. Column 2 shows the percent gain of the row over average earnings,
which has a median of $8,638 and mean of $9,033. Means in Panel B were constructed by
averaging winsorizing gains for students with non-zero gains, then multiplying by the fraction
of students with non-zero gains.

earnings. Second, and perhaps more surprisingly, most students in our sample take at least

one course from a bottom 5% instructor, so the proposed policy impacts many students.

Though most students have at least one bottom 5% instructor, when we split up the policy

to replace instructors of different types, the median earnings gain is 0 in every case. To limit

the effects of outliers for Panel B, we report the winsorized mean of affected students, scaled

by the fraction of affected students, to measure the average gains from replacing the relevant

group of bottom 5% instructors. We find that the largest gains are from replacing contingent

instructors. The average gain from replacing all bottom 5% contingent instructors is 3, 850,

which is about 42% of the mean.44 Replacing instructors in the bottom 5% of assistant,

associate, and full professors would result in smaller gains.

7.3 Realistic deselection using value-added

A central insight from the analysis in Section 7.1 is that the university’s retention policies

are constrained, as many instructors cannot be dismissed due to tenure or other long-term

contracts. Even among contingent instructors with low student evaluations, the likelihood of

44Note that if we calculate the gains from replacing all instructors in this way rather than report the
medians, the gains are larger than the gains from replacing only tenure-track instructors as shown in Row 1
of Panel B.
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retention is still greater than 50%. It may not be feasible — or even desirable — to replace

5% of instructors annually.45 Within these constraints, this section explores the potential

gains from alternative programs that maintain the current number of annual replacements

but bases retention decisions on instructors’ value-added rather than student evaluations.

In order to incorporate the university’s constraints, we use the empirical relationship be-

tween student evaluations and retention observed for contingent instructors at Texas Tech.

Implicitly, we assume that this relationship reflects the institution’s optimal decisions when

considering hiring, training and development costs that are important to the retention de-

cision. Furthermore, this empirical relationship incorporates the natural turnover rate of

contingent instructors

We show the earnings gains from a policy based on value-added to earnings. While

the policy based on value-added to earnings is likely not implementable, due to the long

measurement horizon, the counterfactual gains give a first-best estimate of possible gains to

earnings from any type of value-added based policy. Institutions could use a value-added

measure that is correlated with value-added to earnings to achieve gains in earnings.

Finally, decision-makers would need to account for the fact that value-added estimates

are noisy measures of true instructor quality. We show feasible policy gains that treat value-

added as estimates by scaling instructor value-added by reliability, which largely depends

upon the number of students used to estimate an instructor’s value-added. Additionally, we

show returns from the infeasible policy that treats value-added estimates as true value-added

to estimate an upper bound on possible gains.

To implement the realistic counterfactual, we begin by predicting the probability that

a contingent instructor j would be retained in year y. We construct this probability in

two ways: first, by using the prediction given from our estimates of Equation 10 to show a

baseline for if the institution actually used the predicted evaluation policy, and second, by

applying the estimated model to vigintiles of value-added to earnings instead of to vigintiles

of evaluations. This gives us two probabilities of retention: R̂j,y(SQ), the “status quo”

probability of retention and R̂j,y(V A), the “value-added” probability of retention. To account

for differing retention rates across year and subject, the regressions and predictions included

year and subject fixed effects. For instructors that cannot be replaced by the policy (tenure-

track instructors, teaching assistants, and first-time instructors) we assign both retention

probabilities as 1.

45Training and developing instructors is a time-intensive process, requiring institutions to invest significant
effort in recruiting and hiring new faculty. Furthermore, the lack of job security in a system with such
frequent layoffs may have spillover effects on other aspects of the educational process. For instance, Light
(2024) demonstrates that institutions relying heavily on contingent faculty are less equipped to develop new
courses in fields with growing demand.
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The model gives a probability that an instructor is retained under the status quo, which

uses student evaluations for retention, and under the counterfactual which uses value-added.

We estimate average earnings changes using the predicted retention probabilities for the full

range of the value-added distributions, as well as a policy that only uses these retention

probabilities for replacing the bottom 5% of instructors.

Given these retention probabilities, instructor j’s value-added standardized within sub-

ject s µz
j,s, the subject-specific variance of value-added to earnings σ2

µ,s, and student i’s

earnings six years post-entry Yi, the predicted gains Gi(a) for student i under replacement

regime a are:46

Gi(a) =

Ti∑
t=1

Ni∑
j=1

(
(1− R̂j,y(a))×−µz

j,s × σµ,s × Yi

)
.

That these gains are still infeasible, in the sense that we treat µ̂z
j,s as true value-added for

instructor j instead of estimated value-added. We also estimate feasible gains to the policy

by scaling each instructor’s value-added estimate by the reliability of their estimate, r(j, s),

from the empirical Bayes estimation.47 This results in a gain of

FGi(a) =

Ti∑
t=1

Ni∑
j=1

(
r(j, s)× (1− R̂j,y(a))×−µz

j,s × σµ,s × Yi

)
.

Table 10 shows average infeasible and feasible gains for these policies. Columns 1 and 2 show

changes from the “status quo” policy. In fact, under a policy that replaces all instructors

based on the evaluation retention probabilities (i.e. allowing the probability of retention to

vary across the full distribution of evaluation scores, regardless of whether their score is in the

bottom 5% of scores overall), students’ average earnings would be lower than actual student

earnings, on average. However, because the status quo is an approximation of the true policy

that the university uses, these changes are small in magnitude, at about 0.2% of the mean.

Applying the evaluation-based retention policy but only changing retention probabilities for

instructors with evaluations in the bottom 5% would increase students earnings on average,

but the gains are again small in magnitude at about 0.1%.48

On the other hand, replacing instructors based on value-added to earnings would increase

student earnings substantially. Columns 3 and 4 report gains from a policy that replaces con-

tingent instructors with probability proportional to their relative position in the distribution

of value-added to earnings. Panel A shows that the gains from the infeasible replacement

46Note that we treat the gains additively to simplify the calculation.
47Appendix C.2 gives the exact formula.
48We do not report feasible gains or losses from the evaluation-based retention policy, but they would be

even smaller in magnitude than the feasible gains.
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for all contingent instructors using value-added would increase average student earnings by

about $300, or by about 3% of mean earnings. Furthermore, we find that replacing only

the bottom 5% of instructors would have nearly as large of an effect. Replacing the bottom

5% of instructors using the infeasible policy predicts an average earnings increase of roughly

2.6%. The feasible policy that treats value-added as an estimate predicts very similar gains

as the infeasible policy. Panel B shows that the gains to replacing all contingent instructors

based on the retention policy but using value-added would increase earnings by about 2.7%,

and the gains to replacing only the bottom 5% are 2.2%.

One limitation of this exercise is that even our estimates of feasible gains from replacing

instructors using value-added ignore the fact that these value-added estimates use data

from the whole sample. A true feasible policy exercise would restrict to using data from

previous periods to predict retention, as is the case for evaluations. Our earnings value-

added estimates are not ideal for this exercise, as the data needed to estimate value-added,

earnings six-years post entry, do not materialize until up to six years after an instructor

teaches a course with a student.

There are two alternative strategies for a feasible exercise. The first is to change the

university’s objective: students with higher grades are more likely to graduate, so a university

might be interested in using estimates of instructor value-added to next-semester GPA to

evaluate instructors. A second possibility is to use a measure of value-added that is correlated

with value-added to earnings. The gains to using such a measure would have smaller effects

on earnings, proportional to the correlation between the two measures.

8 Conclusion

Instructors play an important role in the production of human capital during students’ post-

secondary educations. However, estimates of post-secondary instructor impacts have, thus

far, been limited to a small set of unique institutions with uncommon enrollment policies.

Furthermore, these impacts have generally been measured in terms of within-course stan-

dardized assessments for a small set of courses. Due to the identification and measurement

challenges associated with estimating value-added, most universities use subjective student

evaluations to assess instructor quality and make personnel decisions.

In this paper, we propose and validate an observational method for estimating instruc-

tor value-added that can be applied broadly in higher education. We show that students’

“course histories” reveal otherwise unobservable information about student types that, when

controlled for, substantially reduces forecast bias in value-added estimates. After addressing

the identification and measurement challenges, we document large variation in instructor
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Table 10. Average gains for policy-based deselection at Texas Tech

Evaluations Value-added to Earnings
Avg Gain % Gain Avg Gain % Gain

(1) (2) (3) (4)

Panel A: Infeasible
Replace All Contingent -$23 0.238% $301 3.117%
Replace Bottom 5% Contingent $12 0.124% $250 2.586%

Panel B: Feasible
Replace All Contingent $260 2.690%
Replace Bottom 5% Contingent $209 2.164%

Notes: Estimates are average gains to replacing contingent instructors at Texas Tech using coeffi-
cients from a regression of retention on student evaluation vigintiles with subject-year fixed effects.
Panel A shows infeasible gains, which treat value-added estimates as true value-added and Panel B
shows feasible gains, which scale by the reliability for each instructor. Columns 1 and 2 show gains
for using predictions generated by the actual regression that predicts retention with evaluations,
and 3 and 4 show gains from replacing vigintiles of evaluations with vigintiles of value-added to
earnings in the prediction. Columns 1 and 3 show average gains in dollars while even columns
show percentage gains over mean earnings at Texas Tech, which was $9,651. Row 1 of both panels
show gains from replacing all contingent instructors according to the rule and Row 2 of both panels
shows gains from replacing instructors only in the bottom 5% of the value-added distribution.

impacts on students within a subject. Specifically, a student who moves to a 1 s.d. bet-

ter instructor within a course would improve their next-semester grades by 0.13 points and

increase their income by 17%. Furthermore, we document that student evaluations and

instructor value-added to earnings six years post-college entry are essentially uncorrelated,

highlighting a shortcoming of the use of evaluations in making personnel decisions. We find

that a policy which uses value-added to earnings to deselect contingent instructors could

increase student earnings by 2.7%.

Our method, which uses students’ past and present course choices to control for selection

to instructors, provides new opportunities for institutions to evaluate their instructors and

opens new avenues for researchers to investigate the higher education production function.

For example, in the paper, we focused our attention on instructor effects averaged across all

students. Future research could investigate heterogeneous instructor effects by race, gender,

or ability.49

We view our two outcomes, next-semester GPA and income, as spanning a wide variety

of outcomes which could be useful to students and institutions. At one end, semester GPA

provides measures of student academic ability that are related to graduation and available

49Eastmond et al. (2023) and Bates et al. (2024) are two examples of this type of heterogeneous estimation
in K-12.
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in real time. However, GPAs are likely a noisy measure of student ability, and reflect both

students’ performance in future courses and characteristics of courses students select in the

future (such as grading norms in the subject a student selects). At the other end, income

is an outcome tied to well-being and ability that is widely comparable, but is realized with

such a long lag that it may not be desirable for making short-term personnel decisions. We

expect that our method can be applied to other outcomes of interest in higher education

that lie between GPA and earnings, such as major choice or time to degree.50 These more

intermediate outcomes could both provide institutions with metrics of instructor quality that

both are correlated with earnings and give insight into the mechanisms behind the instructor

impacts we document in this paper.

50For example, Jackson (2018) provides evidence in K-12 that the same strategies to estimate value-added
to standardized test scores can produce unbiased estimates of value-added to non-cognitive outcomes.
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Population Texas Sample Purdue

mean sd mean sd

Enrollment 11,639 11,823 18,107 15,327 40,555
Admit rate 0.78 0.18 0.83 0.15 0.53
SAT-equivalent: 25 pctile 954 144 975 130 1,180
SAT-equivalent: 75 pctile 1,182 127 1,167 125 1,410
Average tuition 19,338 8,724 19,509 7,258 28,520
Average price 13,766 4,172 11,774 2,999 11,898
Student-faculty ratio 16.68 4.54 19.36 3.34 13
Contingent instructors % 0.20 0.14 0.27 0.11 0.13
6-year graduation rate 0.52 0.16 0.44 0.16 0.81
Has a doctoral program 0.41 0.49 0.48 0.51 1.00
R1 (very high research in-
tensity)

0.12 0.33 0.09 0.29 1.00

R2 (high research inten-
sity)

0.12 0.33 0.18 0.39

Other Carnegie classifica-
tion

0.75 0.43 0.73 0.45

N 592 33 1.00

Table A-1. Comparison of institution characteristics.

A Appendix Tables and Figures

Figure A-1. Lagged achievement for business and agricultural econ types in intermediate
micro a Texas A&M

(a) Lagged GPA (b) Entrance Exam Percentile

Notes: This figure shows smoothed kernel density plots for students in two different

course history groups taking Intermediate Micro in the same semester at Texas A&M.
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Table A-2. Student Characteristics

All R1 Non-R1

mean sd mean sd mean sd
Next-Semester GPA 2.96 0.90 3.06 0.85 2.87 0.95
Last Semester GPA 2.99 0.72 3.07 0.69 2.90 0.75
Admissions Exam Percentile 52.97 16.85 62.01 16.99 43.60 16.70
Log Earnings Six Years Post-Entry 8.86 0.73 8.92 0.75 8.80 0.72
Has Income Six Years Post-Entry 0.72 0.44 0.69 0.46 0.75 0.43
Bachelor’s Attainment 0.70 0.43 0.71 0.42 0.68 0.44
Age 21.53 4.33 21.13 3.71 21.94 4.96
Female 0.54 0.47 0.50 0.48 0.58 0.46
Hispanic 0.33 0.42 0.32 0.43 0.35 0.40
Black 0.13 0.29 0.09 0.28 0.17 0.31
Asian 0.10 0.26 0.14 0.31 0.06 0.20
Number of Students in Section 68.93 60.94 89.28 85.96 47.85 35.03

Notes: This table shows summary statistics for most of our standard control variables for students
in Texas. This table takes observation-weighted averages across institutions and subjects. The
first two columns use data from all institutions. The next columns split universities by their 2010
Carnegie classification: R1 universities have “very high research activity.”

Figure A-2. Lagged achievement for computer science and engineering types in calculus 3
at Purdue

(a) Lagged GPA (b) SAT Score

Notes: This figure shows smoothed kernel density plots for students in two different

course history groups taking Calculus 3 in the same semester at Purdue.
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Figure A-3. Course Enrollment Request Form at Purdue

51



B Purdue’s Course Registration Algorithm

As discussed by Mumford et al. (2024), Purdue University assigns undergraduate courses

using a distinctive course registration algorithm developed by Müller et al. (2010). This

algorithm processes students’ ranked course preferences as input data to generate schedules

for the entire student body. It prioritizes fulfilling primary course requests while minimizing

reliance on alternative requests . Each request is weighted according to the following formula:

weight(a ∈ dom(R)) = 0.9prior(R) × 0.5alt(a), (11)

where prior(R) is the ranking of the requested course, and alt(a) represents alternate

course preferences. To illustrate, consider the course enrollment request form in Figure A-

3. The weight for a first-choice course with no alternatives is 0.9, while second and third

choices receive progressively lower weights. The algorithm solves this allocation problem us-

ing Iterative Forward Search (Müller et al., 2004), and imposes a higher penalty for rejecting

priority-only requests compared to those with alternatives.

The course assignment process follows four key constraints:

1. Seat limits: Each course section has a fixed number of seats, though some, such as

online courses, may have no limit.

2. Overlapping sections: Students cannot be enrolled in overlapping course sections.

3. Distance conflicts: Sections scheduled too close together geographically are avoided

unless there is more than a 20-minute gap between them.

4. Course reservations: Some courses reserve spots for students with specific majors.

C Estimation Details

C.1 Estimating variances of instructor value-added and individual error

We estimate the variances of instructor value-added σ2
µ and individual error σ2

ϵ using max-

imum likelihood estimation, following Gilraine et al. (2020). First, we residualize the out-

comes A∗
ijct as in Equation 3. We model the residuals Aijct as

Aijct = µj + ϵijct

We then construct instructor-period averages Ajt =
1

Njt

∑
c

∑
iAijct, where Njt is the number

of students in instructor j’s courses in period t. Also, denote Ajt as the vector collecting
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observations Aijct of this set of Njt students. Assuming that µj

∼
iidN(0, σ2

µ) and µj

∼
iidN(0, σ2

ϵ ),

Gilraine et al. (2020) show that the likelihood of the residuals takes the form

L(Aijct|σ2
µ, σ

2
ϵ ) =

∏
j

∏
t

L1(Ajt|σ2
µ)L2(Ajt|σ2

µ, σ
2
ϵ )

L1(Ajt|σ2
ϵ ) =

1√
Njt

(
1√
2πσ2

ϵ

)Njt−1

exp

(
−
∑
c

∑
i

(Aijct − Ajt)
2/2σ2

ϵ

)

L2(Ajt|σ2
µ, σ

2
ϵ ) =

1√
2π(σ2

µ + σ2
ϵ/Njt)

exp

(
−

A2
jt

2(σ2
µ + σ2

ϵ/Njt)

)

We then maximize this likelihood numerically to obtain σ̂2
µ and σ̂2

ϵ .

C.2 Empirical bayes estimation

Because the variance of individual error σ2
ϵ is much larger than the variance of value-added

σ2
µ, simple fixed effects estimates of µj will be affected by classical measure. Then, if we

regress outcomes on value-added, such as in our forecast bias tests, coefficient estimates on

value-added will be biased. To address this issue, we estimate value-added shrunk using

empirical Bayes, following Kane and Staiger (2008); Chetty et al. (2014a); Bau and Das

(2020), and most other modern value-added studies.

To estimate empirical Bayes estimates of value-added, we begin by residualizing the

outcomes A∗
ijct as in Equation 3 and obtain residuals Aijct. We then estimate σ2

µ and σ2
ϵ as

discussed in Appendix C.1. With these estimates in hand, we construct average residuals

Ajt =
1

Njt

∑
c

∑
iAijct, where Njt is the number of students taught by instructor j in period

t in a given subject.

We then construct weighted sums of these residuals, using weights wjt:

mj =
∑
t

wjtAjt

wjt =
hjt∑
t hjt

hjt =
1

σ̂2
µ +

σ̂2
ϵ

Njt

These weights up-weight the contributions of periods where instructor j teaches more stu-

dents since the averages Ajt are more precise estimates of value-added in these periods, and
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down-weight contributions of periods with fewer students.

Finally, we construct empirical Bayes estimates by multiplying mj by the reliability for

instructor j’s estimate:

µ̂j = mj

(
σ̂2
µ

σ̂2
µ + (

∑
t hjt)

−1

)
.

The reliability shrinks value-added estimates toward zero in two ways. First, it attenuates

estimates more for instructors who taught fewer students total, since their estimates are

less reliable than instructors who taught more students. Second, it attenuates all value-

added estimates more in subjects where σ̂2
µ is smaller relative to σ̂2

ϵ , since in these subjects,

measurement error is more of a problem. We use this reliability factor in constructing our

feasible policy gains in Section 7.3.

C.3 Jackknife empirical bayes estimates

When regressing an outcome on estimates of value-added, such as in the forecast bias test in

Equation 7, there may be spurious correlations if data from periods found on the left hand

side of the equation are used to estimate value-added on the right hand side of the equation.

To address this issue, we construct jackknife empirical Bayes value-added estimates for these

types of forecast bias tests Chetty et al. (2014a).

To implement jackknife empirical Bayes value-added, we first residualize outcomes A∗
ijct

and estimate variances as normal. Then, in the second step, we construct the weighted sums

mj and weights wjt and hjt leaving out period t, or both period t and t−2, if the forecast bias

test regresses changes in outcomes on changes in value-added. This results in time-varying

weighted sums mjt, which we multiply by the updated shrinkage term, using the new weights

hjt that leave out t. Finally, we obtain jackknife empirical Bayes estimates µ̂jt.

Though these estimates vary across time, our assumption that µj is fixed across time

remains unchanged. The time-varying nature of µ̂jt is merely a statistical artifact of the

estimation procedure.

C.4 Hierarchical clustering

Hierarchical clustering is an unsupervised method for grouping data. Applying this method

to data requires three choices: a measure of divergence between observations, a method for

measuring divergence between a groups, and a level of divergence to define the final cluster.

To group students together based on their course histories, we apply hierarchical clustering
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to Hict
51, which we define as the vector of indicators for each course offered at an institution,

where an entry is 1 if a student has taken the course corresponding to the entry during a

period t′ ≤ t and a zero otherwise. The methods described are also used to group students

at Purdue based on their top six course preferences, similarly encoded in the vector Pict, but

without loss of generality, we will focus on histories.

To measure divergence between observations, we use the Jaccard index. Given a set

of course histories {Hict}Nct
i=1 for students in course c in period t, we calculate divergence

between the histories Hict and Hjct, with i ̸= j:

g(Hict,Hjct) =
H′

ictHjct

H′
ictHjct + (I −Hict)′Hjct +H′

ict(I −Hjct)

where I is a vector of ones. Intuitively, this measures the fraction of matches between student

i and j’s course histories relative to the total number of courses either student has taken.

We use this measure because these vectors are very sparse.

To summarize distance between groups, we use the average linkage. This method mea-

sures the divergence between groups as the average divergence between all pairs of observa-

tions in each group. Let H1
ct and H2

ct be histories of groups of students in course c during

period t. The average linkage between these groups is

G(H1
ct,H

2
ct) =

1

N1N2

N1∑
i=1

N2∑
j=2

g(Hict,Hjct)

With an average linkage in hand, hierarchical clustering constructs a cluster analysis with

the following algorithm:

1. Treat each observation j as a singleton group

2. Calculate the average linkage G(Ha
ct,H

b
ct) between all groups a ̸= b

3. Join the two groups with the smallest average linkage for a new set of groups

4. Repeat steps 2 and 3 until all observations are in a singleton group

This produces a large set of nested possible clusters. Finally, we choose a level of di-

vergence to define which cluster to use. To choose a level of divergence, we calculate the

mean of the levels of divergence at which each observation was first grouped and use the

corresponding cluster analysis.

51We use the bold font Hict to refer to the full vector of past and current courses for student i in course
c during period t, while Hict refers to the course history similarity group fixed effect
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We chose to use the mean divergence first, to tie our hands and avoid cherry-picking, and

second, to balance the trade-off between between group size and within-group similarity.

Choosing a very low divergence level to form clusters results in many students being left

in singleton groups, with grouped students being very similar. Those students in singleton

groups are not used for estimation in the main specification. On the other hand, choosing a

high divergence level puts many students into one large group. This means that students in

the large group may actually be quite dissimilar, which does not solve the selection problem.

Table A-7 shows summary statistics on the course history similarity groups in Texas.

The mean number of students per course was about 11 students, with 5 students per group

on average. Most of the groups of students were groups of two. However, more than half of

students were in groups of at least 15.

D Robustness Tests

D.1 Course-level teaching roster changes forecast bias test

In the teaching roster changes forecast bias, we used changes in value-added to predict

changes in student outcomes within a subject-course level cell. An alternative is to conduct

this same test, but using course averages instead. Figure A-4 presents results from course

teaching roster changes forecast bias tests for all Texas universities in our sample. Similar

to the course level forecast bias tests shown previously, using course histories to control for

unobservable student selection greatly reduces bias, especially relative to estimates that use

only lagged achievement to control for selection. In fact, estimates with lagged achievements

only may be more forecast biased than suggested by the subject-course level tests.

D.2 Including ungrouped students

After applying hierarchical clustering to students’ course histories, roughly 30% of student-

course-period observations were left in singleton groups. We call these students “ungrouped”.

Our main results were estimated by excluding ungrouped students. Here, we include un-

grouped students in the estimation procedure by putting all such students in the same course

and period into a course history similarity group. Effectively, ungrouped students become the

reference group in each course-period for the history group fixed effects in the residualization

in Equation 3.

Figure A-5 shows forecast bias tests from all Texas institutions for value-added estimates

to next-semester GPA and log earnings six years post-entry that include ungrouped stu-

dents. Similar to estimates using only grouped students, estimates with ungrouped students
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Figure A-4. Course teaching roster changes forecast bias test for Texas universities

(a) Next-semester GPA (b) Log earnings six years post-entry

Notes: The teaching roster changes forecast bias test leverages year-to-year variation

in teaching assignments to assess whether changes in residual student achievement

are predicted by shifts in instructor value-added, with estimates regressing students’

residualized next-semester GPA on changes in average jackknifed value-added. Bias co-

efficients estimated separately for each Texas university, controlling for period-subject-

course level fixed effects. Observations are at the course-period level. Standard errors

are clustered at the period-subject level. An estimate closer to 1 indicates better con-

trols for selection.

substantially reduce forecast bias relative to estimates that use only lagged achievement to

control for student selection.

Table A-8 shows average variances across Texas institutions of value-added estimates

that include ungrouped students. The variance of value-added to both GPA and earnings

are very close to the variances estimated using only grouped students, indicating that our

sample restriction does not change the interpretation of our results meaningfully.

D.3 Change in enrollment

We test this assumption with a robustness check that regresses changes in student enrollment

on changes in value-added, and find that changes in value-added within a course do not

predict changes in student achievement. The full results of this test are in the appendix.

The forecast bias test described in Equation 7 relies on the assumption that E[ξslt|∆Mslt] =

0, or that changes in student unobservables are independent of changes in value-added within
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Figure A-5. Teaching roster changes forecast bias test for Texas universities

(a) Next-semester GPA (b) Log earnings six years post-entry

Notes: The teaching roster changes forecast bias test leverages year-to-year variation

in teaching assignments to assess whether changes in residual student achievement

are predicted by shifts in instructor value-added, with estimates regressing students’

residualized next-semester GPA on changes in average jackknifed value-added. Bias co-

efficients estimated separately for each Texas university, controlling for period-subject

fixed effects. Observations are at the subject-course level-period level. Standard errors

are clustered at the period-subject level. An estimate closer to 1 indicates better con-

trols for selection.

a subject-level. While innocuous in K-12, this assumption could be more concerning in

post-secondary education where students are able to choose when to take a course from an

instructor. For example, if students could perfectly predict teaching rosters and waited to

take an intermediate-level economics course from a particular instructor, this test would

be biased. Therefore, we rely on the assumption that most changes in teaching rosters are

unexpected by students, or that students do not react to these changes.

We examine evidence for this assumption holding by investigating how well changes in

value-added predict changes in enrollment within a subject-level. Let ∆Mslt be the change

in average value-added within a subject and level from period t − 2 to period t, and ∆Nslt

be the change in average enrollment for the same subject-level and period. Our robustness

test regresses changes in average enrollment on changes in average value-added:

∆Nslt = δ∆Mslt + ξ′slt
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An estimate of δ = 0 would indicate that students are not systematically enrolling in subjects

and levels where value-added is higher or lower. If students do wait to enroll in courses to

have instructors that have higher (or lower) value-added, this test would have an estimate

of δ > 0 (δ < 0).

Figure A-6 presents these results for Texas. The coefficients indicate that at nearly all

universities, changes in instructor value-added do not predict changes in enrollment. Nearly

all estimates have confidence intervals containing zero, and most estimates are very near

zero.

The results of this test find no evidence that students increase or decrease their enroll-

ment in response to changes in value-added. This suggests that students do not time their

enrollment to be with high- or low value-added instructors, suggesting that the teaching

roster changes forecast bias tests are valid.

E Student Evaluation Questions

Table A-9 shows the categorization of questions from Texas tech student evaluations. Stu-

dents gave scores from 1 to 5 in response to each question, where 5 indicated that the

statement was very true for the instructor. We then took averages across these responses to

form evaluation scores. Note that we collected two additional categories: the “soft skills”

score, that encapsulates questions concerning the instructors kindness and availability, and

the “fair course” score, which incorporates questions concerning the overall fairness of the

course. We excluded these categories from the main regressions and policy evaluation because

they were introduced halfway through our panel. Table A-10 shows bivariate regressions of

value-added and leniency on all five evaluation scores. Again, value-added to GPA is signif-

icantly correlated with both of these evaluation scores and value-added to earnings is not.

For these categories, leniency is even more highly correlated than the overall and teaching

score categories.
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Figure A-6. Teaching roster changes enrollment test

Notes: The teaching roster changes enrollment to assess whether changes in student

enrollment are predicted by shifts in instructor value-added, with estimates regressing

changes in enrollment on changes in average jackknifed value-added. Bias coefficients

estimated separately for each Texas university, controlling for period-subject fixed ef-

fects. Observations are at the subject-course level-period level. Standard errors are

clustered at the period-subject level. An estimate closer to 0 indicates that students

do not systematically respond to changes in value-added.
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Table A-3. Heterogeneity in value-added across instruc-
tors

VA to GPA VA to Earnings
(1) (2)

Full Professor -0.550*** 0.654**
(0.116) (0.287)

Associate Professor -0.532*** 0.688**
(0.110) (0.289)

Assistant Professor -0.500*** 0.604**
(0.111) (0.275)

Contingent Instructors -0.493*** 0.622**
(0.100) (0.257)

Asian -0.033** -0.030**
(0.015) (0.013)

Black -0.050*** -0.023
(0.013) (0.015)

Hispanic 0.016 0.000
(0.016) (0.013)

Female -0.006 0.010
(0.015) (0.011)

International -0.055*** -0.002
(0.013) (0.013)

Log Average Salary 0.047*** -0.052*
(0.011) (0.026)

Age 0.002 0.011
(0.007) (0.006)

Fraction Upper Level -0.070** 0.028
(0.030) (0.022)

N 68,903 62,359
R2 0.016 0.009

Notes: Estimates are from separate regressions of value-added on
instructor characteristics. Regressions control for subject and insti-
tution, with observations at the instructor level. Standard errors are
clustered at the institution level. Value-added values are standard-
ized, so the interpretation of the coefficient is standard deviation
difference in average value-added for a given outcome for instruc-
tors having a given characteristic relative to the base category.
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Table A-4. History cluster examples

A: Organic Chemistry Chemist Type Medical School Type
Chemistry (1) (2)

Commonly
Taken Courses

BMEN101 CHEM120
BMEN253 HLTH210
CHEM119 HLTH236
ENGR102 HLTH240
MATH151 PSYC107
VTPP434 SOCI205

Last Semester GPA 3.33 3.67
Admissions Test Percentile 86 59
Selection Test p-Value 0.04

B: Intermediate Micro Business Type Agricultural Econ Type

Commonly
Taken Courses

ACCT229 AGEC117
ACCT230 AGEC217
BUSN101 AGEC314
ECON202 AGEC340
ISTM210 POLS207

Last Semester GPA 3.30 3.32
Admissions Test Percentile 76 62
Selection Test p-Value 0.06

C: Calculus 3 Computer Science Type Engineering Type

Commonly
Taken Courses

CS18000 ENGR16100
CS18200 ENGR16200
CS19100 HONR19901
CS19300 HONR19902
MA16200 MA16200

Last Semester GPA 3.57 3.47
SAT Score 760 751
Selection Test p-Value 0.02

Notes: This table compares popular courses and summary statistics for selected course history
similarity groups in Organic Chemistry (Panel A) and Intermediate Microeconomics (Panel B) at
Texas A&M and Multivariable Calculus at Purdue (Panel C). The selection test p-value comes
from a Pearson’s χ2 test of independence. For Panel A and B that come from Texas A&M,
we show percentile of entrance exam score. Panel C shows average SAT score for the Purdue
students.
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Table A-5. Linear retention of contingent in-
structors

Retained

No Controls VA Controls
(1) (2)

Instructor Score 0.041*** 0.042***
(0.008) (0.009)

N 4,213 3,902

Notes: Estimates are from regressions of a retention
indicator of contingent instructor scores from student
evaluations with subject and year fixed effects. Column
2 controls for vigintiles of value-added to next-semester
GPA and earnings. Observations are at the instructor-
subject-year level. Standard errors are clustered at the
subject level.
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Table A-6. Non-linear retention of contingent instructors

Retained

No Controls VA Controls
(1) (2)

Instructor Score Vigintile 1 -0.289*** -0.262***
(0.032) (0.038)

Instructor Score Vigintile 2 -0.175*** -0.136**
(0.036) (0.041)

Instructor Score Vigintile 3 -0.157*** -0.121**
(0.038) (0.049)

Instructor Score Vigintile 4 -0.176*** -0.164***
(0.037) (0.045)

Instructor Score Vigintile 5 -0.170*** -0.152***
(0.037) (0.044)

Instructor Score Vigintile 6 -0.173*** -0.156**
(0.039) (0.049)

Instructor Score Vigintile 7 -0.143*** -0.124**
(0.030) (0.037)

Instructor Score Vigintile 8 -0.209*** -0.202***
(0.038) (0.044)

Instructor Score Vigintile 9 -0.157*** -0.146**
(0.038) (0.044)

Instructor Score Vigintile 10 -0.169*** -0.137**
(0.032) (0.041)

Instructor Score Vigintile 11 -0.144*** -0.134***
(0.028) (0.031)

Instructor Score Vigintile 12 -0.148*** -0.142***
(0.028) (0.035)

Instructor Score Vigintile 13 -0.158*** -0.142***
(0.027) (0.033)

Instructor Score Vigintile 14 -0.118*** -0.094**
(0.026) (0.033)

Instructor Score Vigintile 15 -0.137*** -0.121***
(0.026) (0.033)

Instructor Score Vigintile 16 -0.157*** -0.144***
(0.028) (0.036)

Instructor Score Vigintile 17 -0.126*** -0.111***
(0.025) (0.031)

Instructor Score Vigintile 18 -0.127*** -0.107**
(0.028) (0.035)

Instructor Score Vigintile 19 -0.104** -0.097**
(0.036) (0.042)

N 4,213 3,902

Notes: These regressions are similar to those in Table A-5, but use vigintiles of instructor scores
from student evaluations. Estimates are relative to the top vigintile of instructor scores. Column 2
controls for vigintiles of value-added to GPA and earnings.
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Table A-7. Course history similarity group
statistics

Mean Median
(1) (2)

Groups per Course 10.892 4
Students per Group 5.193 2
Fraction Ungrouped 0.299 .
Fraction in Groups of ≥ 15 0.505 .

Notes: This table shows statistics on the course history
similarity groups for our Texas sample. The units of
observation for rows 1 and 2 were course-periods. The
units of observation for rows 3 and 4 were student-course-
periods.

Table A-8. Variances of
value-added distributions with
ungrouped students

σ2
µ

Next Semester GPA 0.014
Log Earnings 0.023

Notes: Variance of the value-added
distributions were estimated within
subject and institution, using max-
imum likelihood estimation, follow-
ing Gilraine et al. (2020). This
table then shows student-course-
period weighted averages of these
variances across subject and insti-
tution.
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Table A-9. Evaluation Question Categorization

Category Question Text

Instructor Score Overall this instructor was effective
Overall, the instructor was an effective teacher

Teaching Score The course objectives were specified and followed by the instructor
The instructor demonstrated knowledge of the subject
The instructor stimulated student learning
The instructor presented the information clearly
The instructor emphasized the major points and concepts

Course Score Overall this course was a valuable learning experience
Overall, this course was a valuable learning experience

Soft Skills Score The instructor treated all students fairly
The instructor treated all students with respect
The instructor welcomed and encouraged questions and comments
The instructor was available for consultation during office hours
or by appointment

Fair Course Score Expectations were clearly stated either verbally or in the syllabus
The testing and evaluation procedures were fair
The workload was appropriate for the hours of credit

Notes: Categorization of student evaluation questions from Texas Tech. Some wordings of questions
changed slightly during our panel of evaluations.
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Table A-10. Comparison of instructor value-added to
student evaluations

Value-added
GPA Earnings Leniency
(1) (2) (3)

A: Soft Skills Score 0.091** 0.000 0.235***
(0.034) (0.023) (0.033)

N 1,841 1,839 2,052

B: Fair Course Score 0.125*** 0.003 0.260***
(0.031) (0.021) (0.037)

N 1,841 1,839 2,052

Notes: Estimates are from separate bivariate regressions of instruc-
tor and course quality measures, based on student evaluations, on
instructor value-added or leniency. Evaluations Texas Tech. The
specific questions related to instructor, teaching, and course quality
are detailed in Appendix E. Leniency is defined as the difference be-
tween an instructor’s average grades and the average grades given
by other instructors teaching the same subject at the same level.
All student evaluation scores, value-added, and leniency measures
are normalized. Regressions control for institution, with observa-
tions at the instructor level. Standard errors are clustered at the
subject level.
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